Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  



























Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Process  





2 Adsorbents  





3 Applications  





4 Variations of PSA technology  



4.1  Double Stage PSA  





4.2  Rapid PSA  





4.3  Vacuum swing adsorption  







5 See also  





6 References  





7 Further reading  














Pressure swing adsorption






العربية

Deutsch
Français
Bahasa Indonesia
Nederlands
Polski
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 


















From Wikipedia, the free encyclopedia
 


Schematic drawing of the PSA process ("aria" = air input). Note the symmetry in a vertical plane between the left and the right sketches.
Nitrogen generator using PSA

Pressure swing adsorption (PSA) is a technique used to separate some gas species from a mixture of gases (typically air) under pressure according to the species' molecular characteristics and affinity for an adsorbent material. It operates at near-ambient temperature and significantly differs from the cryogenic distillation commonly used to separate gases. Selective adsorbent materials (e.g., zeolites, (aka molecular sieves), activated carbon, etc.) are used as trapping material, preferentially adsorbing the target gas species at high pressure. The process then swings to low pressure to desorb the adsorbed gas.

Process[edit]

Animation of pressure swing adsorption, (1) and (2) showing alternating adsorption and desorption.
I compressed air input A adsorption
O oxygen output D desorption
E exhaust

The pressure swing adsorption (PSA) process is based on the phenomenon that under high pressure, gases tend to be trapped onto solid surfaces, i.e. to be "adsorbed". The higher the pressure, the more gas is adsorbed. When the pressure is dropped, the gas is released, or desorbed. PSA can be used to separate gases in a mixture because different gases are adsorbed onto a given solid surface more or less strongly. For example, if a gas mixture such as air is passed under pressure through a vessel containing an adsorbent bed of zeolite that attracts nitrogen more strongly than oxygen, a fraction of nitrogen will stay in the bed, and the gas exiting the vessel will be richer in oxygen than the mixture entering. When the bed reaches the limit of its capacity to adsorb nitrogen, it can be regenerated by decreasing the pressure, thus releasing the adsorbed nitrogen. It is then ready for another cycle of producing oxygen-enriched air.

Using two adsorbent vessels allows for near-continuous production of the target gas. It also allows a pressure equalisation, where the gas leaving the vessel being depressurised is used to partially pressurise the second vessel. This results in significant energy savings, and is a common industrial practice.

Adsorbents[edit]

Aside from their ability to discriminate between different gases, adsorbents for PSA systems are usually very porous materials chosen because of their large specific surface areas. Typical adsorbents are zeolite, activated carbon, silica gel, alumina, or synthetic resins. Though the gas adsorbed on these surfaces may consist of a layer only one or at most a few molecules thickness, surface areas of several hundred square meters per gram enable the adsorption of a large portion of the adsorbent's weight in gas. In addition to their affinity for different gases, zeolites and some types of activated carbon may utilize their molecular sieve characteristics to exclude some gas molecules from their structure based on the size and shape of the molecules, thereby restricting the ability of the larger molecules to be adsorbed.

Applications[edit]

Gas separator membrane skid used in landfill gas utilization process

Aside from its use to supply medical oxygen, or as a substitute for bulk cryogenic or compressed-cylinder storage, which is the primary oxygen source for any hospital, PSA has numerous other uses. One of the primary applications of PSA is in the removal of carbon dioxide (CO2) as the final step in the large-scale commercial synthesis of hydrogen (H2) for use in oil refineries and in the production of ammonia (NH3). Refineries often use PSA technology in the removal of hydrogen sulfide (H2S) from hydrogen feed and recycle streams of hydrotreating and hydrocracking units. Another application of PSA is the separation of carbon dioxide from biogas to increase the methane (CH4) ratio. Through PSA the biogas can be upgraded to a quality similar to natural gas. This includes a process in landfill gas utilization to upgrade landfill gas to utility-grade high purity methane gas to be sold as natural gas.[1]

PSA is also used in:

In the frame of carbon capture and storage (CCS), research is also currently underway to capture CO2 in large quantities from coal-fired power plants prior to geosequestration, in order to reduce greenhouse gas production from these plants.[4][5]

PSA has also been discussed as a future alternative to the non-regenerable sorbent technology used in space suit primary life support systems, in order to save weight and to extend the operating time of the suit.[6]

This is the process used in medical oxygen concentrators used by emphysema and COVID-19 patients and others requiring oxygen-enriched air for breathing.[citation needed]

Variations of PSA technology[edit]

Double Stage PSA[edit]

(DS-PSA, sometimes also referred to as Dual Step PSA)
With this variant of PSA developed for use in laboratory nitrogen generators, nitrogen gas is produced into two steps: in the first step, the compressed air is forced to pass through a carbon molecular sieve to produce nitrogen at a purity of approximately 98%; in the second step this nitrogen is forced to pass into a second carbon molecular sieve and the nitrogen gas reaches a final purity up to 99.999%. The purge gas from the second step is recycled and partially used as feed gas in the first step.

In addition, the purge process is supported by active evacuation for better performance in the next cycle. The goals of both of these changes is to improve efficiency over a conventional PSA process.

DS-PSA can also be applied to increase the oxygen concentration. In this case, an aluminum silica based zeolite adsorbs nitrogen in the first stage reaching 95% oxygen in the outlet, and in the second stage a carbon-based molecular sieve adsorbs the residual nitrogen in a reverse cycle, concentrating oxygen up to 99%.

Rapid PSA[edit]

Rapid pressure swing adsorption, or RPSA, is frequently used in portable oxygen concentrators. It allows a large reduction in the size of the adsorbent bed when high purity is not essential and when the feed gas (air) can be discarded.[7] It works by quickly cycling the pressure while alternately venting opposite ends of the column at the same rate. This means that non-adsorbed gases progress along the column much faster and are vented at the distal end, while adsorbed gases do not get the chance to progress and are vented at the proximal extremity.[8]

Vacuum swing adsorption[edit]

Vacuum swing adsorption (VSA) segregates certain gases from a gaseous mixture at near ambient pressure; the process then swings to a vacuum to regenerate the adsorbent material. VSA differs from other PSA techniques because it operates at near-ambient temperatures and pressures. VSA typically draws the gas through the separation process with a vacuum. For oxygen and nitrogen VSA systems, the vacuum is typically generated by a blower. Hybrid vacuum pressure swing adsorption (VPSA) systems also exist. VPSA systems apply pressurized gas to the separation process and also apply a vacuum to the purge gas. VPSA systems, like one of the portable oxygen concentrators, are among the most efficient systems measured on customary industry indices, such as recovery (product gas out/product gas in) and productivity (product gas out/mass of sieve material). Generally, higher recovery leads to a smaller compressor, blower, or other compressed gas or vacuum source and lower power consumption. Higher productivity leads to smaller sieve beds. The consumer will most likely consider indices which have a more directly measurable difference in the overall system, like the amount of product gas divided by the system weight and size, the system initial and maintenance costs, the system power consumption or other operational costs, and reliability.

See also[edit]

References[edit]

  1. ^ "SWANA 2012 Excellence Award Application "Landfill Gas Control" Seneca Landfill, Inc" (PDF): 8. Retrieved 13 October 2016. {{cite journal}}: Cite journal requires |journal= (help)
  • ^ Propylene Production via Propane Dehydrogenation, Technology Economics Program. Intratec. 2012. ISBN 9780615661025.
  • ^ Air Products and Chemicals, Inc (2009). "Systèmes de production de gaz PRISM®" (PDF) (in French).
  • ^ http://www.co2crc.com.au Archived August 19, 2006, at the Wayback Machine
  • ^ Grande, Carlos A.; Cavenati, Simone, eds. (2005), "Pressure Swing Adsorption for Carbon Dioxide Sequesteration", 2nd Mercosur Congress on Chemical Engineering
  • ^ Alptekin, Gokhan (2005-01-08). "An Advanced Rapid Cycling CO2 and H2O Control System for PLSS". NASA. Retrieved 2007-02-24.
  • ^ Chai, S. W.; Kothare, M. V.; Sircar, S. (2011). "Rapid Pressure Swing Adsorption for Reduction of Bed Size Factor of a Medical Oxygen Concentrator". Industrial & Engineering Chemistry Research. 50 (14): 8703. doi:10.1021/ie2005093.
  • ^ Ruthven, Douglas M.; Shamsuzzman Farooq, Kent S. Knaebel (1993). Pressure Swing Adsorption. Wiley-VCH. ISBN 9780471188186.
  • Further reading[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Pressure_swing_adsorption&oldid=1226898987"

    Categories: 
    Separation processes
    Industrial gases
    Gas technologies
    Gas separation
    Hidden categories: 
    CS1 errors: missing periodical
    CS1 French-language sources (fr)
    Webarchive template wayback links
    Articles with short description
    Short description is different from Wikidata
    Articles needing additional references from May 2024
    All articles needing additional references
    All articles with unsourced statements
    Articles with unsourced statements from June 2022
    Pages displaying short descriptions of redirect targets via Module:Annotated link
    Pages displaying wikidata descriptions as a fallback via Module:Annotated link
     



    This page was last edited on 2 June 2024, at 13:18 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki