Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 References  














Thiocyanogen






العربية
تۆرکجه
Español
فارسی
Italiano
Русский
Slovenčina
Српски / srpski
Srpskohrvatski / српскохрватски
ி

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Thiocyanogen
Names
Preferred IUPAC name

Cyanic dithioperoxyanhydride

Other names

Dicyanodisulfane

Identifiers

CAS Number

3D model (JSmol)

ChEBI
ChemSpider

PubChem CID

UNII

CompTox Dashboard (EPA)

  • InChI=1S/C2N2S2/c3-1-5-6-2-4 checkY

    Key: DTMHTVJOHYTUHE-UHFFFAOYSA-N checkY

  • InChI=1/C2N2S2/c3-1-5-6-2-4

    Key: DTMHTVJOHYTUHE-UHFFFAOYAE

  • N#CSSC#N

Properties

Chemical formula

C2N2S2
Molar mass 116.16 g mol−1
Appearance Colorless crystal or liquid[1]: 241, 255–256 
Melting point −2.5 °C (27.5 °F; 270.6 K)[1]: 241 
Boiling point ≈20 °C (decomposes)[2]

Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

☒N verify (what is checkY☒N ?)

Infobox references

Thiocyanogen, (SCN)2, is a pseudohalogen derived from the pseudohalide thiocyanate, [SCN], with behavior intermediate between dibromine and diiodine.[2] This hexatomic compound exhibits C2 point group symmetry and has the connectivity NCS-SCN.[3]

In the lungs, lactoperoxidase may oxidize thiocyanate to thiocyanogen[4]orhypothiocyanite.[5]

Berzelius proposed that thiocyanogen ought exist as part of his radical theory, but the compound's isolation proved problematic. Liebig pursued a wide variety of synthetic routes for the better part of a century, but, even with Wöhler's assistance, only succeeded in producing a complex mixture with the proportions of thiocyanic acid. In 1861, Linnemann generated appreciable quantities of thiocyanogen from a silver thiocyanate suspensionindiethyl ether and excess iodine, but misidentified the minor product as sulfur iodide cyanide (ISCN).[6] Indeed, that reaction suffers from competing equilibria attributed to the weak oxidizing power of iodine; the major product is sulfur dicyanide.[7] The following year, Schneider produced thiocyangen from silver thiocyanate and disulfur dichloride, but the product disproportionated to sulfur and trisulfur dicyanides.[6]

The subject then lay fallow until the 1910s, when Niels Bjerrum began investigating gold thiocyanate complexes. Some eliminated reductively and reversibly, whereas others appeared to irreversibly generate cyanide and sulfate salt solutions. Understanding the process required reanalyzing the decomposition of thiocyanogen using the then-new techniques of physical chemistry. Bjerrum's work revealed that water catalyzed thiocyanogen's decomposition via hypothiocyanous acid. Moreover, the oxidation potential of thiocyanogen appeared to be 0.769 V, slightly greater than iodine but less than bromine.[6] In 1919, Söderbäck successfully isolated stable thiocyanogen from oxidation of oxidation of plumbous thiocyanate with bromine.[6][7]

Modern syntheses typically differ little from Söderbäck's process. Thiocyanogen synthesis begins when aqueous solutions of lead(II) nitrate and sodium thiocyanate, combined, precipitate plumbous thiocyanate. Treating an anhydrous Pb(SCN)2 suspension in glacial acetic acid with bromine then affords a 0.1M solution of thiocyanogen that is stable for days.[8] Alternatively, a solution of bromine in methylene chloride is added to a suspension of Pb(SCN)2 in methylene chloride at 0 °C.[9]

Pb(SCN)2 + Br2 → (SCN)2 + PbBr2

In either case, the oxidation is exothermic.[1]: 255 

An alternative technique is the thermal decompositionofcupric thiocyanate at 35–80 °C:[1]: 253 

2Cu(SCN)2 → CuSCN + (SCN)2

In general, thiocyanogen is stored in solution, as the pure compound explodes above 20 °C[2] to a red-orange polymer.[1]: 241  However, the sulfur atoms disproportionate in water:[1]: 241–242 [10]

3(SCN)2 + 4H2O → H2SO4 + HCN + 5SCN + 5H+

Thiocyanogen is a weak electrophile, attacking only highly activated (phenolicoranilinic) or polycyclic arenes.[1]: 243–245 Itattacks carbonyls at the α position.[1] Heteratoms are attacked more easily, and the compound thiocyanates sulfur, nitrogen, and various poor metals.[1]: 241  It adds trans to alkenes to give 1,2-bis(thiocyanato) compounds; the intermediate thiiranium ion can be trapped with many nucleophiles.[2] Radical polymerization is the most likely side-reaction, and yields improve when cold and dark.[2][1]: 247  However, the addition reaction is slow, and light may be necessary to accelerate the process.[1]: 247  Titanacyclopentadienes give (Z,Z)-1,4-bis(thiocyanato)-1,3-butadienes, which in turn can be converted to 1,2-dithiins.[9] Thiocyanogen only adds once to alkynes; the resulting dithiocyanato­acyloin is not particularly olefinic.[1]: 247  Selenocyanogen, (SeCN)2, prepared from reaction of silver selenocyanate with iodine in tetrahydrofuran at 0 °C,[11] reacts in a similar manner to thiocyanogen.[9]

Thiocyanogen has been used to estimate the degree of unsaturationinfatty acids, similar to the iodine value.[6][1]: 247 

References[edit]

  1. ^ a b c d e f g h i j k l m Wood, John L. (August 1947) [1946]. "Substitution and addition reactions of thiocyanogen". In Adams, Roger (ed.). Organic Reactions (PDF). Vol. 3 (3rd reprint ed.). New York / London: Wiley / Chapman Hall. pp. 241–266.
  • ^ a b c d e Schwan, Adrian L. (2001-04-15), "Thiocyanogen", Encyclopedia of Reagents for Organic Synthesis, Chichester, UK: John Wiley & Sons, Ltd, doi:10.1002/047084289x.rt095, ISBN 978-0-471-93623-7, retrieved 2024-03-30
  • ^ Jensen, James (2005). "Vibrational frequencies and structural determination of thiocyanogen". Journal of Molecular Structure: THEOCHEM. 714 (2–3): 137–141. doi:10.1016/j.theochem.2004.09.046.
  • ^ Aune, Thomas M.; Thomas, Edwin L. (1977) [2 May 1977]. "Accumulation of hypothiocyanite ion during peroxidase-catalyzed oxidation of thiocyanate ion". European Journal of Biochemistry. 80: 209–214. doi:10.1111/j.1432-1033.1977.tb11873.x.
  • ^ Lemma, Kelemu; Ashby, Michael T. (2009-09-21). "Reactive Sulfur Species: Kinetics and Mechanism of the Reaction of Hypothiocyanous Acid with Cyanide To Give Dicyanosulfide in Aqueous Solution". Chemical Research in Toxicology. 22 (9): 1622–1628. doi:10.1021/tx900212r. ISSN 0893-228X.
  • ^ a b c d e Kaufmann, H. P. (1925). "Das freie Rhodan und seine Anwendung in der Maßanalyse. Eine neue Kennzahl der Fette" [Unbound rhodanium and its application to elemental analysis: A new measurement technique for fats]. Archiv der Pharmazie und Berichte der Deutschen Pharmazeutischen Gesellschaft (in German). 263: 675–721 – via HathiTrust.
  • ^ a b Söderbäck, Erik (1919). "Studien über das freie Rhodan". Justus Liebig's Annalen der Chemie. 419 (3): 217–322. doi:10.1002/jlac.19194190302. hdl:2027/uc1.$b133351.
  • ^ Gardner, William Howlett; Weinberger, Harold (1939). "Thiocyanogen Solution". Inorganic Syntheses. Inorganic Syntheses. Vol. 1. pp. 84–86. doi:10.1002/9780470132326.ch29. ISBN 978-0-470-13232-6.
  • ^ a b c Block, E; Birringer, M; DeOrazio, R; Fabian, J; Glass, RS; Guo, C; He, C; Lorance, E; Qian, Q; Schroeder, TB; Shan, Z; Thiruvazhi, M; Wilson, GC; Zhang, Z (2000). "Synthesis, Properties, Oxidation, and Electrochemistry of 1,2-Dichalcogenins". J. Am. Chem. Soc. 122 (21): 5052–5064. doi:10.1021/ja994134s.
  • ^ Stedman, G.; Whincup, P. A. E. (1969). "Oxidation of metal thiocyanates by nitric and nitrous acids. Part I. Products". Journal of the Chemical Society A: Inorganic, Physical, Theoretical: 1145. doi:10.1039/j19690001145. ISSN 0022-4944.
  • ^ Meinke, PT; Krafft, GA; Guram, A (1988). "Synthesis of selenocyanates via cyanoselenation of organocopper reagents". J. Org. Chem. 53 (15): 3632–3634. doi:10.1021/jo00250a047.

  • t
  • e

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Thiocyanogen&oldid=1221421006"

    Categories: 
    Inorganic carbon compounds
    Inorganic sulfur compounds
    Inorganic nitrogen compounds
    Thiocyanates
    Pseudohalogens
    Inorganic compound stubs
    Hidden categories: 
    CS1 German-language sources (de)
    Articles without KEGG source
    Articles containing unverified chemical infoboxes
    Articles with short description
    Short description matches Wikidata
    All stub articles
     



    This page was last edited on 29 April 2024, at 20:59 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki