Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  



























Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1Synthesis, basic properties, and structure
 




2Biochemical applications
 


2.1Protein immobilization
 




2.2Protein cleavage
 


2.2.1Mechanism
 




2.2.2Reaction conditions
 




2.2.3Side reactions
 








3Organic synthesis
 




4Toxicity, storage, and deactivation
 




5References
 




6Further reading
 




7External links
 













Cyanogen bromide






العربية
تۆرکجه
Čeština
Deutsch
Español
Esperanto
فارسی
Français
עברית
Nederlands

Polski
Português
Română
Русский
Српски / srpski
Srpskohrvatski / српскохрватски
Suomi
Tiếng Vit

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 


















From Wikipedia, the free encyclopedia
 


Cyanogen bromide
Skeletal formula of cyanogen bromide
Spacefill model of cyanogen bromide
Names
Preferred IUPAC name

Carbononitridic bromide[3]

Other names
  • Bromine cyanide[1]
  • Campilit[2]
  • Identifiers

    CAS Number

    3D model (JSmol)

    Beilstein Reference

    1697296
    ChemSpider
    ECHA InfoCard 100.007.320 Edit this at Wikidata
    EC Number
    • 208-051-2
    MeSH Cyanogen+Bromide

    PubChem CID

    RTECS number
    • GT2100000
    UNII
    UN number 1889

    CompTox Dashboard (EPA)

    • InChI=1S/CBrN/c2-1-3 checkY

      Key: ATDGTVJJHBUTRL-UHFFFAOYSA-N checkY

    • BrC#N

    Properties

    Chemical formula

    BrCN
    Molar mass 105.921 g mol−1
    Appearance Colorless solid
    Density 2.015 g mL−1
    Melting point 50 to 53 °C (122 to 127 °F; 323 to 326 K)
    Boiling point 61 to 62 °C (142 to 144 °F; 334 to 335 K)

    Solubility in water

    Reacts
    Vapor pressure 16.2 kPa
    Thermochemistry

    Std enthalpy of
    formation
    fH298)

    136.1–144.7 kJ mol−1
    Hazards
    GHS labelling:

    Pictograms

    GHS05: Corrosive GHS06: Toxic GHS09: Environmental hazard

    Signal word

    Danger

    Hazard statements

    H300, H310, H314, H330, H410

    Precautionary statements

    P260, P273, P280, P284, P302+P350
    NFPA 704 (fire diamond)
    NFPA 704 four-colored diamondHealth 4: Very short exposure could cause death or major residual injury. E.g. VX gasFlammability 0: Will not burn. E.g. waterInstability 1: Normally stable, but can become unstable at elevated temperatures and pressures. E.g. calciumSpecial hazards (white): no code
    4
    0
    1
    NIOSH (US health exposure limits):

    PEL (Permissible)

    5 mg m−3
    Related compounds

    Related alkanenitriles

  • Thiocyanic acid
  • Cyanogen iodide
  • Cyanogen chloride
  • Cyanogen fluoride
  • Acetonitrile
  • Aminoacetonitrile
  • Glycolonitrile
  • Cyanogen
  • Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

    checkY verify (what is checkY☒N ?)

    Infobox references

    Cyanogen bromide is the inorganic compound with the formula (CN)Br or BrCN. It is a colorless solid that is widely used to modify biopolymers, fragment proteins and peptides (cuts the C-terminus of methionine), and synthesize other compounds. The compound is classified as a pseudohalogen.

    Synthesis, basic properties, and structure[edit]

    The carbon atom in cyanogen bromide is bonded to bromine by a single bond and to nitrogen by a triple bond (i.e. Br−C≡N). The compound is linear and polar, but it does not spontaneously ionize in water. It dissolves in both water and polar organic solvents.

    Cyanogen bromide can be prepared by oxidationofsodium cyanide with bromine, which proceeds in two steps via the intermediate cyanogen ((CN)2):

    When refrigerated the material has an extended shelflife. Like some other cyanogen compounds, cyanogen bromide undergoes an exothermic trimerisation to cyanuric bromide ((BrCN)3). This reaction is catalyzed by traces of bromine, metal salts, acids and bases.[4] For this reason, experimentalists avoid brownish samples.[5]

    Cyanogen bromide is hydrolyzed to form hydrogen cyanate and hydrobromic acid

    Biochemical applications[edit]

    The main uses of cyanogen bromide are to immobilize proteins, fragment proteins by cleaving peptide bonds, and synthesize cyanamides and other molecules.

    Cyanogen bromide activation method

    Protein immobilization[edit]

    Cyanogen bromide is often used to immobilize proteins by coupling them to reagents such as agarose for affinity chromatography.[6] Because of its simplicity and mild pH conditions, cyanogen bromide activation is the most common method for preparing affinity gels. Cyanogen bromide is also often used because it reacts with the hydroxyl groups on agarose to form cyanate esters and imidocarbonates. These groups are reacted with primary amines in order to couple the protein onto the agarose matrix, as shown in the figure. Because cyanate esters are more reactive than are cyclic imidocarbonates, the amine will react mostly with the ester, yielding isourea derivatives, and partially with the less reactive imidocarbonate, yielding substituted imidocarbonates.[7]

    The disadvantages of this approach include the toxicity of cyanogen bromide and its sensitivity to oxidation. Also, cyanogen bromide activation involves the attachment of a ligand to agarose by an isourea bond, which is positively charged at neutral pH and thus unstable. Consequently, isourea derivatives may act as weak anion exchangers.[7][dead link]

    Protein cleavage[edit]

    Cyanogen bromide hydrolyzes peptide bonds at the C-terminus of methionine residues. This reaction is used to reduce the size of polypeptide segments for identification and sequencing.

    Mechanism[edit]

    Cyanogen bromide peptide bond cleavage

    The electron density in cyanogen bromide is shifted away from the carbon atom, making it unusually electrophilic, and towards the more electronegative bromine and nitrogen. This leaves the carbon particularly vulnerable to attack by a nucleophile, and the cleavage reaction begins with a nucleophilic acyl substitution reaction in which bromine is ultimately replaced by the sulfur in methionine. This attack is followed by the formation of a five-membered ring as opposed to a six-membered ring, which would entail the formation of a double bond in the ring between nitrogen and carbon. This double bond would result in a rigid ring conformation, thereby destabilizing the molecule. Thus, the five-membered ring is formed so that the double bond is outside the ring, as shown in the figure.

    Although the nucleophilic sulfur in methionine is responsible for attacking BrCN, the sulfur in cysteine does not behave similarly. If the sulfur in cysteine attacked cyanogen bromide, the bromide ion would deprotonate the cyanide adduct, leaving the sulfur uncharged and the beta carbon of the cysteine not electrophilic. The strongest electrophile would then be the cyanide carbon, which, if attacked by water, would yield cyanic acid and the original cysteine.

    Reaction conditions[edit]

    Cleaving proteins with BrCN requires using a buffer such as 0.1M HCl (hydrochloric acid) or 70% (formic acid).[8] These are the most common buffers for cleavage. An advantage to HCl is that formic acid causes the formation of formyl esters, which complicates protein characterization. However, formic is still often used because it dissolves most proteins. Also, the oxidation of methionine to methionine sulfoxide, which is inert to BrCN attack, occurs more readily in HCl than in formic acid, possibly because formic acid is a reducing acid. Alternative buffers for cleavage include guanidineorurea in HCl because of their ability to unfold proteins, thereby making methionine more accessible to BrCN.[9]

    Water is required for normal peptide bond cleavage of the iminolactone intermediate. In formic acid, cleavage of Met-Ser and Met-Thr bonds is enhanced with increased water concentration because these conditions favor the addition of water across the imine rather than reaction of the side chain hydroxyl with the imine. Lowered pH tends to increase cleavage rates by inhibiting methionine side chain oxidation.[9]

    Side reactions[edit]

    When methionine is followed by serineorthreonine, side reactions can occur that destroy the methionine without peptide bond cleavage. Normally, once the iminolactone is formed (refer to figure), water and acid can react with the imine to cleave the peptide bond, forming a homoserine lactone and new C-terminal peptide. However, if the adjacent amino acid to methionine has a hydroxylorsulfhydryl group, this group can react with the imine to form a homoserine without peptide bond cleavage.[9] These two cases are shown in the figure.

    Organic synthesis[edit]

    Cyanogen bromide is a common reagent in organic synthesis.[5] As stated earlier, the reagent is prone to attack by nucleophiles such as amines and alcohols because of the electrophilic carbon. In the synthesis of cyanamides and dicyanamides, primary and secondary amines react with BrCN to yield mono- and dialkylcyanamides, which can further react with amines and hydroxylamine to yield guanidines and hydroxyguanidines. In the von Braun reaction, tertiary amines react with BrCN to yield disubstituted cyanamides and an alkyl bromide. Cyanogen bromide can be used to prepare aryl nitriles, nitriles, anhydrides, and cyanates. It can also serve as a cleaving agent.[10] Cyanogen bromide is used in the synthesis of 4-methylaminorex ("ice") and viroxime.

    Toxicity, storage, and deactivation[edit]

    Cyanogen bromide can be stored under dry conditions at 2 to 8 °C for extended periods.[7]

    Cyanogen bromide is volatile, and readily absorbed through the skinorgastrointestinal tract. Therefore, toxic exposure may occur by inhalation, physical contact, or ingestion. It is acutely toxic, causing a variety of nonspecific symptoms. Exposure to even small amounts may cause convulsions or death. LD50 orally in rats is reported as 25–50 mg/kg.[11]

    The recommended method to deactivate cyanogen bromide is with sodium hydroxide and bleach.[12] The aqueous alkali hydroxide instantly hydrolyzes (CN)Br to alkali cyanide and bromide. The cyanide can then be oxidized by sodiumorcalcium hypochlorite to the less toxic cyanate ion. Deactivation is extremely exothermic and may be explosive.[11]

    References[edit]

    1. ^ The Merck Index (10th ed.). Rahway, NJ: Merck & Co. 1983. p. 385.
  • ^ "Campilit, CAS Number: 506-68-3". Archived from the original on 2023-03-20. Retrieved 2013-03-14.
  • ^ "Cyanogen Bromide – Compound Summary". PubChem Compound. USA: National Center for Biotechnology Information. 26 March 2005. Identification. Retrieved 4 June 2012.
  • ^ Morris, Joel; Kovács, Lajos; Ohe, Kouichi (2015). "Cyanogen Bromide". Encyclopedia of Reagents for Organic Synthesis. pp. 1–8. doi:10.1002/047084289X.rc269.pub3. ISBN 9780470842898.
  • ^ a b Joel Morris; Lajos Kovács (2008). "Cyanogen Bromide". Encyclopedia of Reagents for Organic Synthesis. doi:10.1002/047084289X.rc269.pub2. ISBN 978-0471936237.
  • ^ Hermanson, G. T.; Mallia, A. K.; Smith, P. K. (1992). Immobilized Affinity Ligand Techniques. Academic Press. ISBN 978-0-12-342330-6.
  • ^ a b c "Cyanogen Bromide Activated Matrices" (PDF). Sigma. [dead link]
  • ^ Schroeder, W. A.; Shelton, J. B.; Shelton, J. R. (1969). "An Examination of Conditions for the Cleavage of Polypeptide Chains with Cyanogen Bromide". Archives of Biochemistry and Biophysics. 130 (1): 551–556. doi:10.1016/0003-9861(69)90069-1. PMID 5778667.
  • ^ a b c Kaiser, R.; Metzka, L. (1999). "Enhancement of Cyanogen Bromide Cleavage Yields for Methionyl-Serine and Methionyl-Threonine Peptide Bonds". Analytical Biochemistry. 266 (1): 1–8. doi:10.1006/abio.1998.2945. PMID 9887207.
  • ^ Kumar, V. (2005). "Cyanogen Bromide (CNBr)" (PDF). Synlett. 2005 (10): 1638–1639. doi:10.1055/s-2005-869872. Art ID: V12705ST.
  • ^ a b "Cyanogen Bromide HSDB 708". HSDB. NIH / NLM. 2009-04-07.
  • ^ Lunn, G.; Sansone, E. B. (1985). "Destruction of Cyanogen Bromide and Inorganic Cyanides". Analytical Biochemistry. 147 (1): 245–250. doi:10.1016/0003-2697(85)90034-X. PMID 4025821.
  • Further reading[edit]

    External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Cyanogen_bromide&oldid=1219001175"

    Categories: 
    Bromine compounds
    Triatomic molecules
    Cyano compounds
    Nonmetal halides
    Blood agents
    Lachrymatory agents
    Pseudohalogens
    Hidden categories: 
    All articles with dead external links
    Articles with dead external links from June 2020
    Articles with short description
    Short description is different from Wikidata
    Articles without InChI source
    Articles without EBI source
    Articles without KEGG source
    ECHA InfoCard ID from Wikidata
    Chembox having GHS data
    Articles containing unverified chemical infoboxes
    Chembox image size set
    Short description matches Wikidata
     



    This page was last edited on 15 April 2024, at 04:29 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki