Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 List of isotopes  





2 Tin-117m  





3 Tin-121m  





4 Tin-126  





5 References  














Isotopes of tin






العربية
Català
Чӑвашла
Čeština
Español
Esperanto
فارسی
Français

Bahasa Indonesia
Magyar
Nederlands

Русский


 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Tin-121m)

Isotopesoftin (50Sn)
Main isotopes[1] Decay
abun­dance half-life (t1/2) mode pro­duct
112Sn 0.970% stable
114Sn 0.66% stable
115Sn 0.34% stable
116Sn 14.5% stable
117Sn 7.68% stable
118Sn 24.2% stable
119Sn 8.59% stable
120Sn 32.6% stable
122Sn 4.63% stable
124Sn 5.79% stable
126Sn trace 2.3×105 y β 126Sb
Standard atomic weight Ar°(Sn)
  • 118.710±0.007[2]
  • 118.71±0.01 (abridged)[3]
  • talk
  • edit
  • Tin (50Sn) is the element with the greatest number of stable isotopes (ten; three of them are potentially radioactive but have not been observed to decay). This is probably related to the fact that 50 is a "magic number" of protons. In addition, twenty-nine unstable tin isotopes are known, including tin-100 (100Sn) (discovered in 1994)[4] and tin-132 (132Sn), which are both "doubly magic". The longest-lived tin radioisotope is tin-126 (126Sn), with a half-life of 230,000 years. The other 28 radioisotopes have half-lives of less than a year.

    List of isotopes[edit]

    Nuclide
    [n 1]
    Z N Isotopic mass (Da)[5]
    [n 2][n 3]
    Half-life[1]
    [n 4]
    Decay
    mode
    [1]
    [n 5]
    Daughter
    isotope

    [n 6]
    Spin and
    parity[1]
    [n 7][n 4]
    Natural abundance (mole fraction)
    Excitation energy[n 4] Normal proportion[1] Range of variation
    99Sn[n 8] 50 49 98.94850(63)# 24(4ms β+ (95%) 99In 9/2+#
    β+, p (5%) 98Cd
    100Sn 50 50 99.93865(26) 1.18(8s β+ (>83%) 100In 0+
    β+, p (<17%) 99Cd
    101Sn 50 51 100.93526(32) 2.22(5s β+ 101In (7/2+)
    β+, p? 100Cd
    102Sn 50 52 101.93029(11) 3.8(2s β+ 102In 0+
    102mSn 2017(2) keV 367(8ns IT 102Sn (6+)
    103Sn 50 53 102.92797(11)# 7.0(2s β+ (98.8%) 103In 5/2+#
    β+, p (1.2%) 102Cd
    104Sn 50 54 103.923105(6) 20.8(5s β+ 104In 0+
    105Sn 50 55 104.921268(4) 32.7(5s β+ 105In (5/2+)
    β+, p (0.011%) 104Cd
    106Sn 50 56 105.916957(5) 1.92(8) min β+ 106In 0+
    107Sn 50 57 106.915714(6) 2.90(5) min β+ 107In (5/2+)
    108Sn 50 58 107.911894(6) 10.30(8) min β+ 108In 0+
    109Sn 50 59 108.911293(9) 18.1(2) min β+ 109In 5/2+
    110Sn 50 60 109.907845(15) 4.154(4h EC 110In 0+
    111Sn 50 61 110.907741(6) 35.3(6) min β+ 111In 7/2+
    111mSn 254.71(4) keV 12.5(10) μs IT 111Sn 1/2+
    112Sn 50 62 111.9048249(3) Observationally Stable[n 9] 0+ 0.0097(1)
    113Sn 50 63 112.9051759(17) 115.08(4d β+ 113In 1/2+
    113mSn 77.389(19) keV 21.4(4) min IT (91.1%) 113Sn 7/2+
    β+ (8.9%) 113In
    114Sn 50 64 113.90278013(3) Stable 0+ 0.0066(1)
    114mSn 3087.37(7) keV 733(14ns IT 114Sn 7−
    115Sn 50 65 114.903344695(16) Stable 1/2+ 0.0034(1)
    115m1Sn 612.81(4) keV 3.26(8) μs IT 115Sn 7/2+
    115m2Sn 713.64(12) keV 159(1) μs IT 115Sn 11/2−
    116Sn 50 66 115.90174283(10) Stable 0+ 0.1454(9)
    116m1Sn 2365.975(21) keV 348(19ns IT 116Sn 5−
    116m2Sn 3547.16(17) keV 833(30ns IT 116Sn 10+
    117Sn 50 67 116.90295404(52) Stable 1/2+ 0.0768(7)
    117m1Sn 314.58(4) keV 13.939(24d IT 117Sn 11/2−
    117m2Sn 2406.4(4) keV 1.75(7) μs IT 117Sn (19/2+)
    118Sn 50 68 117.90160663(54) Stable 0+ 0.2422(9)
    118m1Sn 2574.91(4) keV 230(10ns IT 118Sn 7−
    118m2Sn 3108.06(22) keV 2.52(6) μs IT 118Sn (10+)
    119Sn 50 69 118.90331127(78) Stable 1/2+ 0.0859(4)
    119m1Sn 89.531(13) keV 293.1(7d IT 119Sn 11/2−
    119m2Sn 2127.0(10) keV 9.6(12) μs IT 119Sn (19/2+)
    119m3Sn 2369.0(3) keV 96(9ns IT 119Sn 23/2+
    120Sn 50 70 119.90220256(99) Stable 0+ 0.3258(9)
    120m1Sn 2481.63(6) keV 11.8(5) μs IT 120Sn 7−
    120m2Sn 2902.22(22) keV 6.26(11) μs IT 120Sn 10+
    121Sn[n 10] 50 71 120.9042435(11) 27.03(4h β 121Sb 3/2+
    121m1Sn 6.31(6) keV 43.9(5y IT (77.6%) 121Sn 11/2−
    β (22.4%) 121Sb
    121m2Sn 1998.68(13) keV 5.3(5) μs IT 121Sn 19/2+
    121m3Sn 2222.0(2) keV 520(50ns IT 121Sn 23/2+
    121m4Sn 2833.9(2) keV 167(25ns IT 121Sn 27/2−
    122Sn[n 10] 50 72 121.9034455(26) Observationally Stable[n 11] 0+ 0.0463(3)
    122m1Sn 2409.03(4) keV 7.5(9) μs IT 122Sn 7−
    122m2Sn 2765.5(3) keV 62(3) μs IT 122Sn 10+
    122m3Sn 4721.2(3) keV 139(9ns IT 122Sn 15−
    123Sn[n 10] 50 73 122.9057271(27) 129.2(4d β 123Sb 11/2−
    123m1Sn 24.6(4) keV 40.06(1) min β 123Sb 3/2+
    123m2Sn 1944.90(12) keV 7.4(26) μs IT 123Sn 19/2+
    123m3Sn 2152.66(19) keV 6 μs IT 123Sn 23/2+
    123m4Sn 2712.47(21) keV 34 μs IT 123Sn 27/2−
    124Sn[n 10] 50 74 123.9052796(14) Observationally Stable[n 12] 0+ 0.0579(5)
    124m1Sn 2204.620(23) keV 270(60ns IT 124Sn 5-
    124m2Sn 2324.96(4) keV 3.1(5) μs IT 124Sn 7−
    124m3Sn 2656.6(3) keV 51(3) μs IT 124Sn 10+
    124m4Sn 4552.4(3) keV 260(25ns IT 124Sn 15−
    125Sn[n 10] 50 75 124.9077894(14) 9.634(15d β 125Sb 11/2−
    125m1Sn 27.50(14) keV 9.77(25) min β 125Sb 3/2+
    125m2Sn 1892.8(3) keV 6.2(2) μs IT 125Sn 19/2+
    125m3Sn 2059.5(4) keV 650(60ns IT 125Sn 23/2+
    125m4Sn 2623.5(5) keV 230(17ns IT 125Sn 27/2−
    126Sn[n 13] 50 76 125.907658(11) 2.30(14)×105y β 126Sb 0+ <10−14[6]
    126m1Sn 2218.99(8) keV 6.1(7) μs IT 126Sn 7−
    126m2Sn 2564.5(5) keV 7.6(3) μs IT 126Sn 10+
    126m3Sn 4347.4(4) keV 114(2ns IT 126Sn 15−
    127Sn 50 77 126.9103917(99) 2.10(4h β 127Sb 11/2−
    127m1Sn 5.07(6) keV 4.13(3) min β 127Sb 3/2+
    127m2Sn 1826.67(16) keV 4.52(15) μs IT 127Sn 19/2+
    127m3Sn 1930.97(17) keV 1.26(15) μs IT 127Sn (23/2+)
    127m4Sn 2552.4(10) keV 250 ns (30ns IT 127Sn (27/2−)
    128Sn 50 78 127.910508(19) 59.07(14) min β 128Sb 0+
    128m1Sn 2091.50(11) keV 6.5(5s IT 128Sn 7−
    128m2Sn 2491.91(17) keV 2.91(14) μs IT 128Sn 10+
    128m3Sn 4099.5(4) keV 220(30ns IT 128Sn (15−)
    129Sn 50 79 128.913482(19) 2.23(4) min β 129Sb 3/2+
    129m1Sn 35.15(5) keV 6.9(1) min β 129Sb 11/2−
    129m2Sn 1761.6(10) keV 3.49(11) μs IT 129Sn (19/2+)
    129m3Sn 1802.6(10) keV 2.22(13) μs IT 129Sn 23/2+
    129m4Sn 2552.9(11) keV 221(18ns IT 129Sn (27/2−)
    130Sn 50 80 129.9139745(20) 3.72(7) min β 130Sb 0+
    130m1Sn 1946.88(10) keV 1.7(1) min β 130Sb 7−
    130m2Sn 2434.79(12) keV 1.501(17) μs IT 130Sn (10+)
    131Sn 50 81 130.917053(4) 56.0(5s β 131Sb 3/2+
    131m1Sn 65.1(3) keV 58.4(5s β 131Sb 11/2−
    IT? 131Sn
    131m2Sn 4670.0(4) keV 316(5ns IT 131Sn (23/2−)
    132Sn 50 82 131.9178239(21) 39.7(8s β 132Sb 0+
    132mSn 4848.52(20) keV 2.080(16) μs IT 132Sn 8+
    133Sn 50 83 132.9239138(20) 1.37(7s β (99.97%) 133Sb 7/2−
    β, n (.0294%) 132Sb
    134Sn 50 84 133.928680(3) 0.93(8s β (83%) 134Sb 0+
    β, n (17%) 133Sb
    134mSn 1247.4(5) keV 87(8ns IT 132Sn 6+
    135Sn 50 85 134.934909(3) 515(5ms β (79%) 135Sb 7/2−#
    β, n (21%) 134Sb
    β, 2n? 133Sb
    136Sn 50 86 135.93970(22)# 355(18ms β (72%) 136Sb 0+
    β, n (28%) 135Sb
    β, 2n? 134Sb
    137Sn 50 87 136.94616(32)# 249(15ms β (52%) 137Sb 5/2−#
    β, n (48%) 136Sb
    β, 2n? 135Sb
    138Sn 50 88 137.95114(43)# 148(9ms β (64%) 138Sb 0+
    β, n (36%) 137Sb
    β, 2n? 136Sb
    138mSn 1344(2) keV 210(45ns IT 138Sn (6+)
    139Sn 50 89 138.95780(43)# 120(38ms β 139Sb 5/2−#
    β, n? 138Sb
    β, 2n? 137Sb
    140Sn 50 90 139.96297(32)# 50# ms
    [>550 ns]
    β? 140Sb 0+
    β, n? 139Sb
    β, 2n? 138Sb
    This table header & footer:
    1. ^ mSn – Excited nuclear isomer.
  • ^ ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  • ^ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  • ^ a b c # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  • ^ Modes of decay:
    EC: Electron capture
    IT: Isomeric transition
    n: Neutron emission
    p: Proton emission
  • ^ Bold symbol as daughter – Daughter product is stable.
  • ^ ( ) spin value – Indicates spin with weak assignment arguments.
  • ^ Heaviest known nuclide with more protons than neutrons
  • ^ Believed to decay by β+β+to112Cd
  • ^ a b c d e Fission product
  • ^ Believed to undergo ββ decay to 122Te
  • ^ Believed to undergo ββ decay to 124Te with a half-life over 1×1017 years
  • ^ Long-lived fission product
  • Tin-117m[edit]

    Tin-117m is a radioisotope of tin. One of its uses is in a particulate suspension to treat canine synovitis (radiosynoviorthesis).[7]

    Tin-121m[edit]

    Tin-121m (121mSn) is a radioisotope and nuclear isomer of tin with a half-life of 43.9 years.

    In a normal thermal reactor, it has a very low fission product yield; thus, this isotope is not a significant contributor to nuclear waste. Fast fission or fission of some heavier actinides will produce tin-121 at higher yields. For example, its yield from uranium-235 is 0.0007% per thermal fission and 0.002% per fast fission.[8]

    Tin-126[edit]

    Yield, % per fission[8]
    Thermal Fast 14 MeV
    232Th not fissile 0.0481 ± 0.0077 0.87 ± 0.20
    233U 0.224 ± 0.018 0.278 ± 0.022 1.92 ± 0.31
    235U 0.056 ± 0.004 0.0137 ± 0.001 1.70 ± 0.14
    238U not fissile 0.054 ± 0.004 1.31 ± 0.21
    239Pu 0.199 ± 0.016 0.26 ± 0.02 2.02 ± 0.22
    241Pu 0.082 ± 0.019 0.22 ± 0.03 ?

    Tin-126 is a radioisotope of tin and one of the only seven long-lived fission products of uranium and plutonium. While tin-126's half-life of 230,000 years translates to a low specific activity of gamma radiation, its short-lived decay products, two isomersofantimony-126, emit 17 and 40 keV gamma radiation and a 3.67 MeV beta particle on their way to stable tellurium-126, making external exposure to tin-126 a potential concern.

    Tin-126 is in the middle of the mass range for fission products. Thermal reactors, which make up almost all current nuclear power plants, produce it at a very low yield (0.056% for 235U), since slow neutrons almost always fission 235Uor239Pu into unequal halves. Fast fission in a fast reactorornuclear weapon, or fission of some heavy minor actinides such as californium, will produce it at higher yields.

    References[edit]

    1. ^ a b c d e Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  • ^ "Standard Atomic Weights: Tin". CIAAW. 1983.
  • ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  • ^ K. Sümmerer; R. Schneider; T Faestermann; J. Friese; H. Geissel; R. Gernhäuser; H. Gilg; F. Heine; J. Homolka; P. Kienle; H. J. Körner; G. Münzenberg; J. Reinhold; K. Zeitelhack (April 1997). "Identification and decay spectroscopy of 100Sn at the GSI projectile fragment separator FRS". Nuclear Physics A. 616 (1–2): 341–345. Bibcode:1997NuPhA.616..341S. doi:10.1016/S0375-9474(97)00106-1.
  • ^ Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
  • ^ Shen, Hongtao; Jiang, Shan; He, Ming; Dong, Kejun; Li, Chaoli; He, Guozhu; Wu, Shaolei; Gong, Jie; Lu, Liyan; Li, Shizhuo; Zhang, Dawei; Shi, Guozhu; Huang, Chuntang; Wu, Shaoyong (February 2011). "Study on measurement of fission product nuclide 126Sn by AMS" (PDF). Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 269 (3): 392–395. doi:10.1016/j.nimb.2010.11.059.
  • ^ "https://www.nrc.gov/site-help/search.html?site=AllSites&searchtext=synovetin" (PDF). {{cite web}}: External link in |title= (help)
  • ^ a b M. B. Chadwick et al, "Evaluated Nuclear Data File (ENDF) : ENDF/B-VII.1: Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields, and Decay Data", Nucl. Data Sheets 112(2011)2887. (accessed at https://www-nds.iaea.org/exfor/endf.htm)

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Isotopes_of_tin&oldid=1232157949#Tin-121m"

    Categories: 
    Isotopes of tin
    Tin
    Lists of isotopes by element
    Hidden categories: 
    CS1 errors: external links
    Articles with short description
    Short description is different from Wikidata
     



    This page was last edited on 2 July 2024, at 07:51 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki