コンテンツにスキップ

自己リン酸化

出典: フリー百科事典『ウィキペディア(Wikipedia)』

: autophosphorylation1調[1][2][1]γ-ATP[1]

[]


調[1][2][1][1][2][1][1][1][3][1][3]

[]


/[3]/activation loop[1]/1[4]


cKIT Tyr568 PDB: 1PKG[5]

CSF1R Tyr561 PDB: 3LCDcKIT[4][6]

EPHA2 Tyr594 PDB: 4PDOcKITCSF1R2[4]


FGFR1 Tyr583 PDB: 3GQI[7]

FGFR3 Tyr577 PDB: 4K33FGFR1[4][8]


IGF1R Tyr1165 PDB: 3D94[9]

IGF1R Tyr1166 PDB: 3LVP[4][10]

Lck Tyr394 PDB: 2PL0IGF1R Tyr1165[4][11]

/
PAK1 Thr423 PDB: 3Q4Z4O0R4O0T4P904ZLO4ZY44ZY54ZY65DEY4ZY44ZY5[4][12][13][14][15]

IRAK4 Thr345 PDB: 4U974U9A[16]

NC/
CaMKIIC Thr284 PDB: 3KK83KK9[17]

CaMKII C Thr287 PDB: 2WEL[18]

CLK2N Ser142 PDB: 3NR9[4]

[]


RTKRTK1RTKRTK[19][20]

[]

[]


RTKEGFREGFRRTKEGFR[19]2C[19]

[]


(αβ)22αββ2β[1]

[]

Src[]


Src[1]SrcSrc[21]SrcSH2SH3調Src

(一)SrcSH2

(二)Tyr527SH2SH3

(三)Tyr416

SrcTyr527SH2SH3Tyr416[21]

ATM[]


/PI3KATMATMp53MDM2CHK2ATMATMSer1981DNASer1981ATMATMDNADNA[22]

出典[編集]

  1. ^ a b c d e f g h i j k l m Petsko, Gregory A. (2004). Protein structure and function. Dagmar Ringe. London: New Science Press. ISBN 0-87893-663-7. OCLC 53181467. https://www.worldcat.org/oclc/53181467 
  2. ^ a b c “Phosphorylation: the molecular switch of double-strand break repair”. International Journal of Proteomics 2011: 373816. (2011). doi:10.1155/2011/373816. PMC 3200257. PMID 22084686. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3200257/. 
  3. ^ a b c “Autophosphorylation: a salient feature of protein kinases”. Molecular and Cellular Biochemistry 127–128: 51–70. (Nov 1993). doi:10.1007/BF01076757. PMID 7935362. 
  4. ^ a b c d e f g h “Identifying three-dimensional structures of autophosphorylation complexes in crystals of protein kinases”. Science Signaling 8 (405): rs13. (Dec 2015). doi:10.1126/scisignal.aaa6711. PMC 4766099. PMID 26628682. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4766099/. 
  5. ^ “Structure of a c-kit product complex reveals the basis for kinase transactivation”. The Journal of Biological Chemistry 278 (34): 31461–4. (Aug 2003). doi:10.1074/jbc.C300186200. PMID 12824176. 
  6. ^ “Structure-based drug design enables conversion of a DFG-in binding CSF-1R kinase inhibitor to a DFG-out binding mode”. Bioorganic & Medicinal Chemistry Letters 20 (5): 1543–7. (Mar 2010). doi:10.1016/j.bmcl.2010.01.078. PMID 20137931. 
  7. ^ “The selectivity of receptor tyrosine kinase signaling is controlled by a secondary SH2 domain binding site”. Cell 138 (3): 514–24. (Aug 2009). doi:10.1016/j.cell.2009.05.028. PMC 4764080. PMID 19665973. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4764080/. 
  8. ^ “Structural mimicry of a-loop tyrosine phosphorylation by a pathogenic FGF receptor 3 mutation”. Structure 21 (10): 1889–96. (Oct 2013). doi:10.1016/j.str.2013.07.017. PMC 3839590. PMID 23972473. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3839590/. 
  9. ^ “Small-molecule inhibition and activation-loop trans-phosphorylation of the IGF1 receptor”. The EMBO Journal 27 (14): 1985–94. (Jul 2008). doi:10.1038/emboj.2008.116. PMC 2486273. PMID 18566589. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2486273/. 
  10. ^ “Design of potent IGF1-R inhibitors related to bis-azaindoles”. Chemical Biology & Drug Design 76 (2): 100–6. (Aug 2010). doi:10.1111/j.1747-0285.2010.00991.x. PMID 20545947. 
  11. ^ “Classifying protein kinase structures guides use of ligand-selectivity profiles to predict inactive conformations: structure of lck/imatinib complex”. Proteins 70 (4): 1451–60. (Mar 2008). doi:10.1002/prot.21633. PMID 17910071. 
  12. ^ “Structural insights into the autoactivation mechanism of p21-activated protein kinase”. Structure 19 (12): 1752–61. (Dec 2011). doi:10.1016/j.str.2011.10.013. PMID 22153498. 
  13. ^ “Back pocket flexibility provides group II p21-activated kinase (PAK) selectivity for type I 1/2 kinase inhibitors”. Journal of Medicinal Chemistry 57 (3): 1033–45. (Feb 2014). doi:10.1021/jm401768t. PMID 24432870. 
  14. ^ “Structure-Guided Design of Group I Selective p21-Activated Kinase Inhibitors”. Journal of Medicinal Chemistry 58 (12): 5121–36. (Jun 2015). doi:10.1021/acs.jmedchem.5b00572. PMID 26030457. 
  15. ^ “Design of Selective PAK1 Inhibitor G-5555: Improving Properties by Employing an Unorthodox Low-pK a Polar Moiety”. ACS Medicinal Chemistry Letters 6 (12): 1241–6. (Dec 2015). doi:10.1021/acsmedchemlett.5b00398. PMC 4677365. PMID 26713112. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4677365/. 
  16. ^ “IRAK4 dimerization and trans-autophosphorylation are induced by Myddosome assembly”. Molecular Cell 55 (6): 891–903. (Sep 2014). doi:10.1016/j.molcel.2014.08.006. PMC 4169746. PMID 25201411. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4169746/. 
  17. ^ “Intersubunit capture of regulatory segments is a component of cooperative CaMKII activation”. Nature Structural & Molecular Biology 17 (3): 264–72. (Mar 2010). doi:10.1038/nsmb.1751. PMC 2855215. PMID 20139983. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2855215/. 
  18. ^ “Structure of the CaMKIIdelta/calmodulin complex reveals the molecular mechanism of CaMKII kinase activation”. PLOS Biology 8 (7): e1000426. (2010). doi:10.1371/journal.pbio.1000426. PMC 2910593. PMID 20668654. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2910593/. 
  19. ^ a b c “Asymmetric tyrosine kinase arrangements in activation or autophosphorylation of receptor tyrosine kinases”. Molecules and Cells 29 (5): 443–8. (May 2010). doi:10.1007/s10059-010-0080-5. PMID 20432069. 
  20. ^ C O P E , Cytokines & Cells Online Pathfinder Encyclopedia, April 2012
  21. ^ a b “Src in cancer: deregulation and consequences for cell behaviour”. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 1602 (2): 114–30. (Jun 2002). doi:10.1016/s0304-419x(02)00040-9. PMID 12020799. 
  22. ^ “DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation”. Nature 421 (6922): 499–506. (Jan 2003). Bibcode2003Natur.421..499B. doi:10.1038/nature01368. PMID 12556884. 

関連項目[編集]