コンテンツにスキップ

VHL (タンパク質)

出典: フリー百科事典『ウィキペディア(Wikipedia)』
VHL
PDBに登録されている構造
PDBオルソログ検索: RCSB PDBe PDBj
PDBのIDコード一覧

4WQO, 1LM8, 1LQB, 1VCB, 3ZRC, 3ZRF, 3ZTC, 3ZTD, 3ZUN, 4AJY, 4AWJ, 4B95, 4B9K, 4BKS, 4BKT, 4W9C, 4W9D, 4W9E, 4W9F, 4W9G, 4W9H, 4W9I, 4W9J, 4W9K, 4W9L

識別子
記号VHL, HRCA1, RCA1, VHL1, pvon Hippel-Lindau tumor suppressor
外部IDOMIM: 608537 MGI: 103223 HomoloGene: 465 GeneCards: VHL
遺伝子の位置 (ヒト)
3番染色体 (ヒト)
染色体3番染色体 (ヒト)[1]
3番染色体 (ヒト)

VHL遺伝子の位置

VHL遺伝子の位置

バンドデータ無し開始点10,141,778 bp[1]
終点10,153,667 bp[1]
遺伝子の位置 (マウス)
6番染色体 (マウス)
染色体6番染色体 (マウス)[2]
6番染色体 (マウス)

VHL遺伝子の位置

VHL遺伝子の位置

バンドデータ無し開始点113,600,920 bp[2]
終点113,608,594 bp[2]
RNA発現パターン
さらなる参照発現データ
遺伝子オントロジー
分子機能 ubiquitin protein ligase activity
転写因子結合
ubiquitin-protein transferase activity
血漿タンパク結合
酵素結合
細胞の構成要素 細胞質
細胞質基質
VCB complex

核質
小胞体
ミトコンドリア
細胞核
生物学的プロセス regulation of transcription, DNA-templated
タンパク質の安定化
negative regulation of apoptotic process
negative regulation of transcription by RNA polymerase II
タンパク質分解
positive regulation of transcription, DNA-templated
positive regulation of cell differentiation
cell morphogenesis
regulation of transcription from RNA polymerase II promoter in response to hypoxia
negative regulation of transcription from RNA polymerase II promoter in response to hypoxia
negative regulation of cell population proliferation
遺伝子発現の負の調節
protein ubiquitination
翻訳後修飾
negative regulation of receptor signaling pathway via JAK-STAT
出典:Amigo / QuickGO
オルソログ
ヒトマウス
Entrez
Ensembl
UniProt
RefSeq
(mRNA)

NM_000551
NM_198156
NM_001354723

NM_009507

RefSeq
(タンパク質)

NP_000542
NP_937799
NP_001341652
NP_000542.1

NP_033533

場所
(UCSC)
Chr 3: 10.14 – 10.15 MbChr 3: 113.6 – 113.61 Mb
PubMed検索[3][4]
ウィキデータ
閲覧/編集 ヒト閲覧/編集 マウス

VHLvon Hippel-Lindauvon Hippel-Lindau tumor suppressorVHLVHLVHL[5]pVHL

[]


VHL1VHLVHLVHLVHL1VHL2

VHLelongin Belongin Ccullin-2E3HIFHIF調RNAIIPOLR2G/RPB7VHF[6]18kDa 30 kDa 2
VHLHIF1α調HIF1α2-pVHLpVHLHIF1αhypoxia response elementVHLpVHLHIF1α

VHLHIF1AHIF-1α[7]

HIFHIFHIFVHLHIF

VHLHIF調VHLHIFHIFVHLHIF-1αHIF-2αHIF-1αHIF-2αHIF-2αHIF-1αHIF-2αD1D1[8]HIFHIF-1αHIF-2αHIF[9]

VHLHIFα調2-HIFHIFHIFVHL[10]VHLHIF-1αHIF-1αHIF-1βHIFVEGFVHL

HIFmTORHIFmTOR[11]

HIFVHLHIFVHLHIF調VHLHIFVHLHIF

VHLVHL1VHL2VHL212A2BVHLHIF調2CC調[10]VHL[12]

VHLHIFD1VHL[10]

VHLHIF[13]VHLVHLVHLMad2VHL

[]


VHLHIF-1αVEGFPDGF1調VHL[8]VHLVHLVHL[10]

VHL[12]VHL

VHLVHL1[14]

[]


VHLVEGFHIFVEGFFDA[10]mTORVEGF

HIF2-HIFHIF[15]CHIF

[]


VHL

出典[編集]

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000134086 - Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000033933 - Ensembl, May 2017
  3. ^ Human PubMed Reference:
  4. ^ Mouse PubMed Reference:
  5. ^ “Von Hippel–Lindau Syndrome”. Hormone Research in Paediatrics 84 (3): 145–52. (2015). doi:10.1159/000431323. PMID 26279462. 
  6. ^ Entrez Gene: VHL von Hippel–Lindau tumor suppressor”. 2019年11月9日閲覧。
  7. ^ “von Hippel–Lindau tumor suppressor: not only HIF's executioner”. Trends in Molecular Medicine 10 (4): 146–9. (April 2004). doi:10.1016/j.molmed.2004.02.004. PMID 15162797. 
  8. ^ a b Maxwell, Patrick H. (2005-8). “The HIF pathway in cancer”. Seminars in Cell & Developmental Biology 16 (4-5): 523–530. doi:10.1016/j.semcdb.2005.03.001. ISSN 1084-9521. PMID 16144689. https://www.ncbi.nlm.nih.gov/pubmed/16144689. 
  9. ^ “Heterogeneous Effects of Direct Hypoxia Pathway Activation in Kidney Cancer”. PLoS One 10 (8): e0134645. (2015). doi:10.1371/journal.pone.0134645. PMC 4532367. PMID 26262842. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4532367/. 
  10. ^ a b c d e “The von Hippel–Lindau tumor suppressor protein and clear cell renal carcinoma”. Clinical Cancer Research 13 (2 Pt 2): 680s–684s. (January 2007). doi:10.1158/1078-0432.CCR-06-1865. PMID 17255293. 
  11. ^ “Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex”. Genes & Development 18 (23): 2893–904. (December 2004). doi:10.1101/gad.1256804. PMC 534650. PMID 15545625. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC534650/. 
  12. ^ a b “Molecular basis of the VHL hereditary cancer syndrome”. Nature Reviews. Cancer 2 (9): 673–82. (September 2002). doi:10.1038/nrc885. PMID 12209156. 
  13. ^ “The von Hippel–Lindau tumor suppressor protein influences microtubule dynamics at the cell periphery”. Experimental Cell Research 301 (2): 139–46. (December 2004). doi:10.1016/j.yexcr.2004.07.016. PMID 15530850. 
  14. ^ “Cardiopulmonary function in two human disorders of the hypoxia-inducible factor (HIF) pathway: von Hippel–Lindau disease and HIF-2alpha gain-of-function mutation”. FASEB Journal 25 (6): 2001–11. (June 2011). doi:10.1096/fj.10-177378. PMC 3159892. PMID 21389259. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3159892/. 
  15. ^ “Effect of ascorbate on the activity of hypoxia-inducible factor in cancer cells”. Cancer Research 63 (8): 1764–8. (April 2003). PMID 12702559. 
  16. ^ a b c “Association of SAP130/SF3b-3 with Cullin-RING ubiquitin ligase complexes and its regulation by the COP9 signalosome”. BMC Biochemistry 9: 1. (2008). doi:10.1186/1471-2091-9-1. PMC 2265268. PMID 18173839. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2265268/. 
  17. ^ a b c “Large-scale mapping of human protein-protein interactions by mass spectrometry”. Molecular Systems Biology 3: 89. (2007). doi:10.1038/msb4100134. PMC 1847948. PMID 17353931. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1847948/. 
  18. ^ a b c “Synthetic peptides define critical contacts between elongin C, elongin B, and the von Hippel–Lindau protein”. The Journal of Clinical Investigation 104 (11): 1583–91. (December 1999). doi:10.1172/JCI8161. PMC 481054. PMID 10587522. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC481054/. 
  19. ^ a b c Zhang, Baohong, ed (2008). “VHL type 2B mutations retain VBC complex form and function”. PLoS One 3 (11): e3801. doi:10.1371/journal.pone.0003801. PMC 2583047. PMID 19030229. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2583047/. 
  20. ^ “Muf1, a novel Elongin BC-interacting leucine-rich repeat protein that can assemble with Cul5 and Rbx1 to reconstitute a ubiquitin ligase”. The Journal of Biological Chemistry 276 (32): 29748–53. (August 2001). doi:10.1074/jbc.M103093200. PMID 11384984. 
  21. ^ a b “The von Hippel–Lindau tumor suppressor stabilizes novel plant homeodomain protein Jade-1”. The Journal of Biological Chemistry 277 (42): 39887–98. (October 2002). doi:10.1074/jbc.M205040200. PMID 12169691. 
  22. ^ a b “Identification of a novel protein (VBP-1) binding to the von Hippel–Lindau (VHL) tumor suppressor gene product”. Cancer Research 56 (13): 2881–5. (July 1996). PMID 8674032. 
  23. ^ a b “FIH-1: a novel protein that interacts with HIF-1alpha and VHL to mediate repression of HIF-1 transcriptional activity”. Genes & Development 15 (20): 2675–86. (October 2001). doi:10.1101/gad.924501. PMC 312814. PMID 11641274. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC312814/. 
  24. ^ a b c “Nur77 upregulates HIF-alpha by inhibiting pVHL-mediated degradation”. Experimental & Molecular Medicine 40 (1): 71–83. (February 2008). doi:10.3858/emm.2008.40.1.71. PMC 2679322. PMID 18305400. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2679322/. 
  25. ^ a b c “Structure of an HIF-1alpha -pVHL complex: hydroxyproline recognition in signaling”. Science 296 (5574): 1886–9. (June 2002). doi:10.1126/science.1073440. PMID 12004076. 
  26. ^ a b “Tat-binding protein-1, a component of the 26S proteasome, contributes to the E3 ubiquitin ligase function of the von Hippel–Lindau protein”. Nature Genetics 35 (3): 229–37. (November 2003). doi:10.1038/ng1254. PMID 14556007. 
  27. ^ “The VHL protein recruits a novel KRAB-A domain protein to repress HIF-1alpha transcriptional activity”. The EMBO Journal 22 (8): 1857–67. (April 2003). doi:10.1093/emboj/cdg173. PMC 154465. PMID 12682018. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC154465/. 
  28. ^ “Mechanism of regulation of the hypoxia-inducible factor-1 alpha by the von Hippel–Lindau tumor suppressor protein”. The EMBO Journal 19 (16): 4298–309. (August 2000). doi:10.1093/emboj/19.16.4298. PMC 302039. PMID 10944113. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC302039/. 
  29. ^ “HIF-1alpha binding to VHL is regulated by stimulus-sensitive proline hydroxylation”. Proceedings of the National Academy of Sciences of the United States of America 98 (17): 9630–5. (August 2001). doi:10.1073/pnas.181341498. PMC 55503. PMID 11504942. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC55503/. 
  30. ^ “STAT3 inhibits the degradation of HIF-1alpha by pVHL-mediated ubiquitination”. Experimental & Molecular Medicine 40 (5): 479–85. (October 2008). doi:10.3858/emm.2008.40.5.479. PMC 2679355. PMID 18985005. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2679355/. 
  31. ^ “Identification of an alternative mechanism of degradation of the hypoxia-inducible factor-1alpha”. The Journal of Biological Chemistry 283 (43): 29375–84. (October 2008). doi:10.1074/jbc.M805919200. PMC 2662024. PMID 18694926. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2662024/. 
  32. ^ “Nitric oxide donor, (+/-)-S-nitroso-N-acetylpenicillamine, stabilizes transactive hypoxia-inducible factor-1alpha by inhibiting von Hippel–Lindau recruitment and asparagine hydroxylation”. Molecular Pharmacology 74 (1): 236–45. (July 2008). doi:10.1124/mol.108.045278. PMID 18426857. 
  33. ^ a b “Ubiquitination of a novel deubiquitinating enzyme requires direct binding to von Hippel–Lindau tumor suppressor protein”. The Journal of Biological Chemistry 277 (7): 4656–62. (February 2002). doi:10.1074/jbc.M108269200. PMID 11739384. 

関連文献[編集]

外部リンク[編集]