Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Properties  



1.1  Single parameter form  





1.2  Summation  





1.3  Scaling  





1.4  Exponential family  







2 Relationship with Brownian motion  



2.1  When drift is zero  







3 Maximum likelihood  





4 Sampling from an inverse-Gaussian distribution  





5 Related distributions  





6 History  





7 Numeric computation and software  





8 See also  





9 References  





10 Further reading  





11 External links  














Inverse Gaussian distribution






Català
Čeština
Deutsch
Français
Italiano


 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Inverse normal distribution)

Inverse Gaussian
Probability density function
Cumulative distribution function
Notation
Parameters
Support
PDF
CDF

where is the standard normal (standard Gaussian) distribution c.d.f.
Mean


Mode
Variance


Skewness
Excess kurtosis
MGF
CF

Inprobability theory, the inverse Gaussian distribution (also known as the Wald distribution) is a two-parameter family of continuous probability distributions with support on (0,∞).

Its probability density function is given by

for x > 0, where is the mean and is the shape parameter.[1]

The inverse Gaussian distribution has several properties analogous to a Gaussian distribution. The name can be misleading: it is an "inverse" only in that, while the Gaussian describes a Brownian motion's level at a fixed time, the inverse Gaussian describes the distribution of the time a Brownian motion with positive drift takes to reach a fixed positive level.

Its cumulant generating function (logarithm of the characteristic function)[contradictory] is the inverse of the cumulant generating function of a Gaussian random variable.

To indicate that a random variable X is inverse Gaussian-distributed with mean μ and shape parameter λ we write .

Properties[edit]

Single parameter form[edit]

The probability density function (pdf) of the inverse Gaussian distribution has a single parameter form given by

In this form, the mean and variance of the distribution are equal,

Also, the cumulative distribution function (cdf) of the single parameter inverse Gaussian distribution is related to the standard normal distribution by

where , and the is the cdf of standard normal distribution. The variables and are related to each other by the identity

In the single parameter form, the MGF simplifies to

An inverse Gaussian distribution in double parameter form can be transformed into a single parameter form by appropriate scaling where

The standard form of inverse Gaussian distribution is

Summation[edit]

IfXi has an distribution for i = 1, 2, ..., n and all Xi are independent, then

Note that

is constant for all i. This is a necessary condition for the summation. Otherwise S would not be Inverse Gaussian distributed.

Scaling[edit]

For any t > 0 it holds that

Exponential family[edit]

The inverse Gaussian distribution is a two-parameter exponential family with natural parametersλ/(2μ2) and −λ/2, and natural statistics X and 1/X.

For fixed, it is also a single-parameter natural exponential family distribution[2] where the base distribution has density

Indeed, with ,

is a density over the reals. Evaluating the integral, we get

Substituting makes the above expression equal to .

Relationship with Brownian motion[edit]

Example of stopped random walks with . The upper figure shows the histogram of waiting times, along with the prediction according to inverse gaussian distribution. The lower figure shows the trajectories.

Let the stochastic process Xt be given by

where Wt is a standard Brownian motion. That is, Xt is a Brownian motion with drift .

Then the first passage time for a fixed level byXt is distributed according to an inverse-Gaussian:

i.e

(cf. Schrödinger[3] equation 19, Smoluchowski[4], equation 8, and Folks[5], equation 1).

Derivation of the first passage time distribution

Suppose that we have a Brownian motion with drift defined by:

And suppose that we wish to find the probability density function for the time when the process first hits some barrier - known as the first passage time. The Fokker-Planck equation describing the evolution of the probability distribution is:

where is the Dirac delta function. This is a boundary value problem (BVP) with a single absorbing boundary condition , which may be solved using the method of images. Based on the initial condition, the fundamental solution to the Fokker-Planck equation, denoted by , is:

Define a point , such that . This will allow the original and mirror solutions to cancel out exactly at the barrier at each instant in time. This implies that the initial condition should be augmented to become:

where is a constant. Due to the linearity of the BVP, the solution to the Fokker-Planck equation with this initial condition is:

Now we must determine the value of . The fully absorbing boundary condition implies that:

At, we have that . Substituting this back into the above equation, we find that:

Therefore, the full solution to the BVP is:

Now that we have the full probability density function, we are ready to find the first passage time distribution . The simplest route is to first compute the survival function , which is defined as:

where is the cumulative distribution function of the standard normal distribution. The survival function gives us the probability that the Brownian motion process has not crossed the barrier at some time . Finally, the first passage time distribution is obtained from the identity:

Assuming that , the first passage time follows an inverse Gaussian distribution:

When drift is zero[edit]

A common special case of the above arises when the Brownian motion has no drift. In that case, parameter μ tends to infinity, and the first passage time for fixed level α has probability density function

(see also Bachelier[6]: 74 [7]: 39 ). This is a Lévy distribution with parameters and .

Maximum likelihood[edit]

The model where

with all wi known, (μλ) unknown and all Xi independent has the following likelihood function

Solving the likelihood equation yields the following maximum likelihood estimates

and are independent and

Sampling from an inverse-Gaussian distribution[edit]

The following algorithm may be used.[8]

Generate a random variate from a normal distribution with mean 0 and standard deviation equal 1

Square the value

and use the relation

Generate another random variate, this time sampled from a uniform distribution between 0 and 1

If then return else return

Sample code in Java:

public double inverseGaussian(double mu, double lambda) {
    Random rand = new Random();
    double v = rand.nextGaussian();  // Sample from a normal distribution with a mean of 0 and 1 standard deviation
    double y = v * v;
    double x = mu + (mu * mu * y) / (2 * lambda) - (mu / (2 * lambda)) * Math.sqrt(4 * mu * lambda * y + mu * mu * y * y);
    double test = rand.nextDouble();  // Sample from a uniform distribution between 0 and 1
    if (test <= (mu) / (mu + x))
        return x;
    else
        return (mu * mu) / x;
}
Wald distribution using Python with aid of matplotlib and NumPy

And to plot Wald distribution in Python using matplotlib and NumPy:

import matplotlib.pyplot as plt
import numpy as np

h = plt.hist(np.random.wald(3, 2, 100000), bins=200, density=True)

plt.show()

Related distributions[edit]

The convolution of an inverse Gaussian distribution (a Wald distribution) and an exponential (an ex-Wald distribution) is used as a model for response times in psychology,[10] with visual search as one example.[11]

History[edit]

This distribution appears to have been first derived in 1900 by Louis Bachelier[6][7] as the time a stock reaches a certain price for the first time. In 1915 it was used independently by Erwin Schrödinger[3] and Marian v. Smoluchowski[4] as the time to first passage of a Brownian motion. In the field of reproduction modeling it is known as the Hadwiger function, after Hugo Hadwiger who described it in 1940.[12] Abraham Wald re-derived this distribution in 1944[13] as the limiting form of a sample in a sequential probability ratio test. The name inverse Gaussian was proposed by Maurice Tweedie in 1945.[14] Tweedie investigated this distribution in 1956[15] and 1957[16][17] and established some of its statistical properties. The distribution was extensively reviewed by Folks and Chhikara in 1978.[5]

Numeric computation and software[edit]

Despite the simple formula for the probability density function, numerical probability calculations for the inverse Gaussian distribution nevertheless require special care to achieve full machine accuracy in floating point arithmetic for all parameter values.[18] Functions for the inverse Gaussian distribution are provided for the R programming language by several packages including rmutil,[19][20] SuppDists,[21] STAR,[22] invGauss,[23] LaplacesDemon,[24] and statmod.[25]

See also[edit]

References[edit]

  1. ^ a b Chhikara, Raj S.; Folks, J. Leroy (1989), The Inverse Gaussian Distribution: Theory, Methodology and Applications, New York, NY, USA: Marcel Dekker, Inc, ISBN 0-8247-7997-5
  • ^ Seshadri, V. (1999), The Inverse Gaussian Distribution, Springer-Verlag, ISBN 978-0-387-98618-0
  • ^ a b Schrödinger, Erwin (1915), "Zur Theorie der Fall- und Steigversuche an Teilchen mit Brownscher Bewegung" [On the Theory of Fall- and Rise Experiments on Particles with Brownian Motion], Physikalische Zeitschrift (in German), 16 (16): 289–295
  • ^ a b Smoluchowski, Marian (1915), "Notiz über die Berechnung der Brownschen Molekularbewegung bei der Ehrenhaft-Millikanschen Versuchsanordnung" [Note on the Calculation of Brownian Molecular Motion in the Ehrenhaft-Millikan Experimental Set-up], Physikalische Zeitschrift (in German), 16 (17/18): 318–321
  • ^ a b Folks, J. Leroy; Chhikara, Raj S. (1978), "The Inverse Gaussian Distribution and Its Statistical Application—A Review", Journal of the Royal Statistical Society, Series B (Methodological), 40 (3): 263–275, doi:10.1111/j.2517-6161.1978.tb01039.x, JSTOR 2984691, S2CID 125337421
  • ^ a b Bachelier, Louis (1900), "Théorie de la spéculation" [The Theory of Speculation] (PDF), Ann. Sci. Éc. Norm. Supér. (in French), Serie 3, 17: 21–89, doi:10.24033/asens.476
  • ^ a b Bachelier, Louis (1900), "The Theory of Speculation", Ann. Sci. Éc. Norm. Supér., Serie 3, 17: 21–89 (Engl. translation by David R. May, 2011), doi:10.24033/asens.476
  • ^ Michael, John R.; Schucany, William R.; Haas, Roy W. (1976), "Generating Random Variates Using Transformations with Multiple Roots", The American Statistician, 30 (2): 88–90, doi:10.1080/00031305.1976.10479147, JSTOR 2683801
  • ^ Shuster, J. (1968). "On the inverse Gaussian distribution function". Journal of the American Statistical Association. 63 (4): 1514–1516. doi:10.1080/01621459.1968.10480942.
  • ^ Schwarz, Wolfgang (2001), "The ex-Wald distribution as a descriptive model of response times", Behavior Research Methods, Instruments, and Computers, 33 (4): 457–469, doi:10.3758/bf03195403, PMID 11816448
  • ^ Palmer, E. M.; Horowitz, T. S.; Torralba, A.; Wolfe, J. M. (2011). "What are the shapes of response time distributions in visual search?". Journal of Experimental Psychology: Human Perception and Performance. 37 (1): 58–71. doi:10.1037/a0020747. PMC 3062635. PMID 21090905.
  • ^ Hadwiger, H. (1940). "Eine analytische Reproduktionsfunktion für biologische Gesamtheiten". Skandinavisk Aktuarietidskrijt. 7 (3–4): 101–113. doi:10.1080/03461238.1940.10404802.
  • ^ Wald, Abraham (1944), "On Cumulative Sums of Random Variables", Annals of Mathematical Statistics, 15 (3): 283–296, doi:10.1214/aoms/1177731235, JSTOR 2236250
  • ^ Tweedie, M. C. K. (1945). "Inverse Statistical Variates". Nature. 155 (3937): 453. Bibcode:1945Natur.155..453T. doi:10.1038/155453a0. S2CID 4113244.
  • ^ Tweedie, M. C. K. (1956). "Some Statistical Properties of Inverse Gaussian Distributions". Virginia Journal of Science. New Series. 7 (3): 160–165.
  • ^ Tweedie, M. C. K. (1957). "Statistical Properties of Inverse Gaussian Distributions I". Annals of Mathematical Statistics. 28 (2): 362–377. doi:10.1214/aoms/1177706964. JSTOR 2237158.
  • ^ Tweedie, M. C. K. (1957). "Statistical Properties of Inverse Gaussian Distributions II". Annals of Mathematical Statistics. 28 (3): 696–705. doi:10.1214/aoms/1177706881. JSTOR 2237229.
  • ^ Giner, Göknur; Smyth, Gordon (August 2016). "statmod: Probability Calculations for the Inverse Gaussian Distribution". The R Journal. 8 (1): 339–351. arXiv:1603.06687. doi:10.32614/RJ-2016-024.
  • ^ Lindsey, James (2013-09-09). "rmutil: Utilities for Nonlinear Regression and Repeated Measurements Models".
  • ^ Swihart, Bruce; Lindsey, James (2019-03-04). "rmutil: Utilities for Nonlinear Regression and Repeated Measurements Models".
  • ^ Wheeler, Robert (2016-09-23). "SuppDists: Supplementary Distributions".
  • ^ Pouzat, Christophe (2015-02-19). "STAR: Spike Train Analysis with R".
  • ^ Gjessing, Hakon K. (2014-03-29). "Threshold regression that fits the (randomized drift) inverse Gaussian distribution to survival data".
  • ^ Hall, Byron; Hall, Martina; Statisticat, LLC; Brown, Eric; Hermanson, Richard; Charpentier, Emmanuel; Heck, Daniel; Laurent, Stephane; Gronau, Quentin F.; Singmann, Henrik (2014-03-29). "LaplacesDemon: Complete Environment for Bayesian Inference".
  • ^ Giner, Göknur; Smyth, Gordon (2017-06-18). "statmod: Statistical Modeling".
  • Further reading[edit]

    External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Inverse_Gaussian_distribution&oldid=1231519657"

    Categories: 
    Continuous distributions
    Exponential family distributions
    Infinitely divisible probability distributions
    Hidden categories: 
    CS1 German-language sources (de)
    CS1: long volume value
    CS1 French-language sources (fr)
    Articles with short description
    Short description matches Wikidata
    Articles contradicting other articles
    Articles with BNF identifiers
    Articles with BNFdata identifiers
    Articles with J9U identifiers
    Articles with LCCN identifiers
    Articles with example Java code
    Articles with example Python (programming language) code
     



    This page was last edited on 28 June 2024, at 18:58 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki