Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Characterization  



1.1  Probability density function  







2 Derivation  





3 Relationship to other distributions  





4 Generating random deviates  





5 Applications  





6 See also  





7 Notes  





8 Further reading  





9 External links  














q-exponential distribution






Català
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


q-exponential distribution
Probability density function
Probability density plots of q-exponential distributions
Parameters shape (real)
rate (real)
Support
PDF
CDF
Mean
Otherwise undefined
Median
Mode 0
Variance
Skewness
Excess kurtosis

The q-exponential distribution is a probability distribution arising from the maximization of the Tsallis entropy under appropriate constraints, including constraining the domain to be positive. It is one example of a Tsallis distribution. The q-exponential is a generalization of the exponential distribution in the same way that Tsallis entropy is a generalization of standard Boltzmann–Gibbs entropyorShannon entropy.[1] The exponential distribution is recovered as

Originally proposed by the statisticians George Box and David Cox in 1964,[2] and known as the reverse Box–Cox transformation for a particular case of power transform in statistics.

Characterization

[edit]

Probability density function

[edit]

The q-exponential distribution has the probability density function

where

is the q-exponentialifq ≠ 1. When q = 1, eq(x) is just exp(x).

Derivation

[edit]

In a similar procedure to how the exponential distribution can be derived (using the standard Boltzmann–Gibbs entropy or Shannon entropy and constraining the domain of the variable to be positive), the q-exponential distribution can be derived from a maximization of the Tsallis Entropy subject to the appropriate constraints.

Relationship to other distributions

[edit]

The q-exponential is a special case of the generalized Pareto distribution where

The q-exponential is the generalization of the Lomax distribution (Pareto Type II), as it extends this distribution to the cases of finite support. The Lomax parameters are:

As the Lomax distribution is a shifted version of the Pareto distribution, the q-exponential is a shifted reparameterized generalization of the Pareto. When q >1, the q-exponential is equivalent to the Pareto shifted to have support starting at zero. Specifically, if

then

Generating random deviates

[edit]

Random deviates can be drawn using inverse transform sampling. Given a variable U that is uniformly distributed on the interval (0,1), then

where is the q-logarithm and

Applications

[edit]

Being a power transform, it is a usual technique in statistics for stabilizing the variance, making the data more normal distribution-like and improving the validity of measures of association such as the Pearson correlation between variables. It has been found to be an accurate model for train delays.[3] It is also found in atomic physics and quantum optics, for example processes of molecular condensate creation via transition through the Feshbach resonance.[4]

See also

[edit]

Notes

[edit]
  1. ^ Tsallis, C. Nonadditive entropy and nonextensive statistical mechanics-an overview after 20 years. Braz. J. Phys. 2009, 39, 337–356
  • ^ Box, George E. P.; Cox, D. R. (1964). "An analysis of transformations". Journal of the Royal Statistical Society, Series B. 26 (2): 211–252. JSTOR 2984418. MR 0192611.
  • ^ Keith Briggs and Christian Beck (2007). "Modelling train delays with q-exponential functions". Physica A. 378 (2): 498–504. arXiv:physics/0611097. Bibcode:2007PhyA..378..498B. doi:10.1016/j.physa.2006.11.084. S2CID 107475.
  • ^ C. Sun; N. A. Sinitsyn (2016). "Landau-Zener extension of the Tavis-Cummings model: Structure of the solution". Phys. Rev. A. 94 (3): 033808. arXiv:1606.08430. Bibcode:2016PhRvA..94c3808S. doi:10.1103/PhysRevA.94.033808. S2CID 119317114.
  • Further reading

    [edit]
    [edit]
    Retrieved from "https://en.wikipedia.org/w/index.php?title=Q-exponential_distribution&oldid=1081124706"

    Categories: 
    Statistical mechanics
    Continuous distributions
    Probability distributions with non-finite variance
     



    This page was last edited on 5 April 2022, at 13:20 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki