Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Definition as a law of large numbers  





2 Functional forms  



2.1  Fredholm determinant  





2.2  Painlevé transcendents  





2.3  Functional equations  







3 Occurrences  





4 Asymptotics  



4.1  Probability density function  





4.2  Cumulative distribution function  





4.3  Painlevé transcendent  







5 Numerics  





6 Tracy-Widom and KPZ universality  





7 See also  





8 Footnotes  





9 References  





10 Further reading  





11 External links  














TracyWidom distribution






Català
Deutsch
Русский
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Densities of Tracy–Widom distributions for β = 1, 2, 4

The Tracy–Widom distribution is a probability distribution from random matrix theory introduced by Craig Tracy and Harold Widom (1993, 1994). It is the distribution of the normalized largest eigenvalue of a random Hermitian matrix. The distribution is defined as a Fredholm determinant.

In practical terms, Tracy–Widom is the crossover function between the two phases of weakly versus strongly coupled components in a system.[1] It also appears in the distribution of the length of the longest increasing subsequence of random permutations,[2] as large-scale statistics in the Kardar-Parisi-Zhang equation,[3] in current fluctuations of the asymmetric simple exclusion process (ASEP) with step initial condition,[4] and in simplified mathematical models of the behavior of the longest common subsequence problem on random inputs.[5] See Takeuchi & Sano (2010) and Takeuchi et al. (2011) for experimental testing (and verifying) that the interface fluctuations of a growing droplet (or substrate) are described by the TW distribution (or) as predicted by Prähofer & Spohn (2000).

The distribution is of particular interest in multivariate statistics.[6] For a discussion of the universality of , , see Deift (2007). For an application of to inferring population structure from genetic data see Patterson, Price & Reich (2006). In 2017 it was proved that the distribution F is not infinitely divisible.[7]

Definition as a law of large numbers[edit]

Let denote the cumulative distribution function of the Tracy–Widom distribution with given . It can be defined as a law of large numbers, similar to the central limit theorem.

There are typically three Tracy–Widom distributions, , with . They correspond to the three gaussian ensembles: orthogonal (), unitary (), and symplectic ().

In general, consider a gaussian ensemble with beta value , with its diagonal entries having variance 1, and off-diagonal entries having variance , and let be probability that an matrix sampled from the ensemble have maximal eigenvalue , then define[8]

where denotes the largest eigenvalue of the random matrix. The shift by centers the distribution, since at the limit, the eigenvalue distribution converges to the semicircular distribution with radius . The multiplication by is used because the standard deviation of the distribution scales as (first derived in [9]).

For example:[10]

where the matrix is sampled from the gaussian unitary ensemble with off-diagonal variance .

The definition of the Tracy–Widom distributions may be extended to all (Slide 56 in Edelman (2003), Ramírez, Rider & Virág (2006)).

One may naturally ask for the limit distribution of second-largest eigenvalues, third-largest eigenvalues, etc. They are known.[11][8]

Functional forms[edit]

Fredholm determinant[edit]

can be given as the Fredholm determinant

of the kernel ("Airy kernel") on square integrable functions on the half line , given in terms of Airy functions Ai by

Painlevé transcendents[edit]

can also be given as an integral

in terms of a solution[note 1] of a Painlevé equation of type II

with boundary condition This function is a Painlevé transcendent.

Other distributions are also expressible in terms of the same :[10]

Functional equations[edit]

Define

then[8]

Occurrences[edit]

Other than in random matrix theory, the Tracy–Widom distributions occur in many other probability problems.[12]

Let be the length of the longest increasing subsequence in a random permutation sampled uniformly from , the permutation group on n elements. Then the cumulative distribution function of converges to .[13]

Asymptotics[edit]

Probability density function[edit]

Let be the probability density function for the distribution, then[12]

In particular, we see that it is severely skewed to the right: it is much more likely for to be much larger than than to be much smaller. This could be intuited by seeing that the limit distribution is the semicircle law, so there is "repulsion" from the bulk of the distribution, forcing to be not much smaller than .

At the limit, a more precise expression is (equation 49 [12])

for some positive number that depends on .

Cumulative distribution function[edit]

At the limit,[14]

and at the limit,
where is the Riemann zeta function, and .

This allows derivation of behavior of . For example,

Painlevé transcendent[edit]

The Painlevé transcendent has asymptotic expansion at (equation 4.1 of [15])

This is necessary for numerical computations, as the solution is unstable: any deviation from it tends to drop it to the branch instead.[16]

Numerics[edit]

Numerical techniques for obtaining numerical solutions to the Painlevé equations of the types II and V, and numerically evaluating eigenvalue distributions of random matrices in the beta-ensembles were first presented by Edelman & Persson (2005) using MATLAB. These approximation techniques were further analytically justified in Bejan (2005) and used to provide numerical evaluation of Painlevé II and Tracy–Widom distributions (for ) in S-PLUS. These distributions have been tabulated in Bejan (2005) to four significant digits for values of the argument in increments of 0.01; a statistical table for p-values was also given in this work. Bornemann (2010) gave accurate and fast algorithms for the numerical evaluation of and the density functions for . These algorithms can be used to compute numerically the mean, variance, skewness and excess kurtosis of the distributions .[17]

Mean Variance Skewness Excess kurtosis
1 −1.2065335745820 1.607781034581 0.29346452408 0.1652429384
2 −1.771086807411 0.8131947928329 0.224084203610 0.0934480876
4 −2.306884893241 0.5177237207726 0.16550949435 0.0491951565

Functions for working with the Tracy–Widom laws are also presented in the R package 'RMTstat' by Johnstone et al. (2009) and MATLAB package 'RMLab' by Dieng (2006).

For a simple approximation based on a shifted gamma distribution see Chiani (2014).

Shen & Serkh (2022) developed a spectral algorithm for the eigendecomposition of the integral operator , which can be used to rapidly evaluate Tracy–Widom distributions, or, more generally, the distributions of the th largest level at the soft edge scaling limit of Gaussian ensembles, to machine accuracy.

Tracy-Widom and KPZ universality[edit]

The Tracy-Widom distribution appears as a limit distribution in the universality class of the KPZ equation. For example it appears under scaling of the one-dimensional KPZ equation with fixed time.[18]

See also[edit]

Footnotes[edit]

  • ^ Baik, Deift & Johansson (1999).
  • ^ Sasamoto & Spohn (2010)
  • ^ Johansson (2000); Tracy & Widom (2009)).
  • ^ Majumdar & Nechaev (2005).
  • ^ Johnstone (2007, 2008, 2009).
  • ^ Domínguez-Molina (2017).
  • ^ a b c Tracy, Craig A.; Widom, Harold (2009b). "The Distributions of Random Matrix Theory and their Applications". In Sidoravičius, Vladas (ed.). New Trends in Mathematical Physics. Dordrecht: Springer Netherlands. pp. 753–765. doi:10.1007/978-90-481-2810-5_48. ISBN 978-90-481-2810-5.
  • ^ Forrester, P. J. (1993-08-09). "The spectrum edge of random matrix ensembles". Nuclear Physics B. 402 (3): 709–728. Bibcode:1993NuPhB.402..709F. doi:10.1016/0550-3213(93)90126-A. ISSN 0550-3213.
  • ^ a b Tracy & Widom (1996).
  • ^ Dieng, Momar (2005). "Distribution functions for edge eigenvalues in orthogonal and symplectic ensembles: Painlevé representations". International Mathematics Research Notices. 2005 (37): 2263–2287. doi:10.1155/IMRN.2005.2263. ISSN 1687-0247.
  • ^ a b c Majumdar, Satya N; Schehr, Grégory (2014-01-31). "Top eigenvalue of a random matrix: large deviations and third order phase transition". Journal of Statistical Mechanics: Theory and Experiment. 2014 (1): P01012. arXiv:1311.0580. Bibcode:2014JSMTE..01..012M. doi:10.1088/1742-5468/2014/01/p01012. ISSN 1742-5468. S2CID 119122520.
  • ^ Baik, Deift & Johansson 1999
  • ^ Baik, Jinho; Buckingham, Robert; DiFranco, Jeffery (2008-02-26). "Asymptotics of Tracy-Widom Distributions and the Total Integral of a Painlevé II Function". Communications in Mathematical Physics. 280 (2): 463–497. arXiv:0704.3636. Bibcode:2008CMaPh.280..463B. doi:10.1007/s00220-008-0433-5. ISSN 0010-3616. S2CID 16324715.
  • ^ Tracy, Craig A.; Widom, Harold (May 1993). "Level-spacing distributions and the Airy kernel". Physics Letters B. 305 (1–2): 115–118. arXiv:hep-th/9210074. Bibcode:1993PhLB..305..115T. doi:10.1016/0370-2693(93)91114-3. ISSN 0370-2693. S2CID 13912236.
  • ^ Bender, Carl M.; Orszag, Steven A. (1999-10-29). Advanced Mathematical Methods for Scientists and Engineers I: Asymptotic Methods and Perturbation Theory. Springer Science & Business Media. pp. 163–165. ISBN 978-0-387-98931-0.
  • ^ Su, Zhong-gen; Lei, Yu-huan; Shen, Tian (2021-03-01). "Tracy-Widom distribution, Airy2 process and its sample path properties". Applied Mathematics-A Journal of Chinese Universities. 36 (1): 128–158. doi:10.1007/s11766-021-4251-2. ISSN 1993-0445. S2CID 237903590.
  • ^ Amir, Gideon; Corwin, Ivan; Quastel, Jeremy (2010). "Probability distribution of the free energy of the continuum directed random polymer in 1 + 1 dimensions". Communications on Pure and Applied Mathematics. 64 (4). Wiley: 466--537. arXiv:1003.0443. doi:10.1002/cpa.20347.
    1. ^ called "Hastings–McLeod solution". Published by Hastings, S.P., McLeod, J.B.: A boundary value problem associated with the second Painlevé transcendent and the Korteweg-de Vries equation. Arch. Ration. Mech. Anal. 73, 31–51 (1980)

    References[edit]

    Further reading[edit]

    External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Tracy–Widom_distribution&oldid=1195832418"

    Categories: 
    Continuous distributions
    Random matrices
    Special functions
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
     



    This page was last edited on 15 January 2024, at 14:11 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki