Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Special cases  



1.1  Mode at a bound  



1.1.1  Distribution of the absolute difference of two standard uniform variables  







1.2  Symmetric triangular distribution  



1.2.1  Distribution of the mean of two standard uniform variables  









2 Generating random variates  





3 Use of the distribution  



3.1  Business simulations  





3.2  Project management  





3.3  Audio dithering  







4 See also  





5 References  





6 External links  














Triangular distribution






Català
Čeština
Deutsch
Español
فارسی
Français
Italiano
עברית

Polski
Português
Shqip
Slovenščina

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Triangular
Probability density function
Plot of the Triangular PMF
Cumulative distribution function
Plot of the Triangular CMF
Parameters

Support
PDF
CDF
Mean
Median
Mode
Variance
Skewness
Excess kurtosis
Entropy
MGF
CF

Inprobability theory and statistics, the triangular distribution is a continuous probability distribution with lower limit a, upper limit b, and mode c, where a < b and a ≤ c ≤ b.

Special cases

[edit]

Mode at a bound

[edit]

The distribution simplifies when c = aorc = b. For example, if a = 0, b = 1 and c = 1, then the PDF and CDF become:

Distribution of the absolute difference of two standard uniform variables

[edit]

This distribution for a = 0, b = 1 and c = 0 is the distribution of X = |X1 − X2|, where X1, X2 are two independent random variables with standard uniform distribution.

Symmetric triangular distribution

[edit]

The symmetric case arises when c = (a + b) / 2. In this case, an alternate form of the distribution function is:

Distribution of the mean of two standard uniform variables

[edit]

This distribution for a = 0, b = 1 and c = 0.5—the mode (i.e., the peak) is exactly in the middle of the interval—corresponds to the distribution of the mean of two standard uniform variables, that is, the distribution of X = (X1 + X2) / 2, where X1, X2 are two independent random variables with standard uniform distribution in [0, 1].[1] It is the case of the Bates distribution for two variables.

Generating random variates

[edit]

Given a random variate U drawn from the uniform distribution in the interval (0, 1), then the variate

[2]

where , has a triangular distribution with parameters and . This can be obtained from the cumulative distribution function.

Use of the distribution

[edit]

The triangular distribution is typically used as a subjective description of a population for which there is only limited sample data, and especially in cases where the relationship between variables is known but data is scarce (possibly because of the high cost of collection). It is based on a knowledge of the minimum and maximum and an "inspired guess"[3] as to the modal value. For these reasons, the triangle distribution has been called a "lack of knowledge" distribution.

Business simulations

[edit]

The triangular distribution is therefore often used in business decision making, particularly in simulations. Generally, when not much is known about the distribution of an outcome (say, only its smallest and largest values), it is possible to use the uniform distribution. But if the most likely outcome is also known, then the outcome can be simulated by a triangular distribution. See for example under corporate finance.

Project management

[edit]

The triangular distribution, along with the PERT distribution, is also widely used in project management (as an input into PERT and hence critical path method (CPM)) to model events which take place within an interval defined by a minimum and maximum value.

Audio dithering

[edit]

The symmetric triangular distribution is commonly used in audio dithering, where it is called TPDF (triangular probability density function).

See also

[edit]

References

[edit]
  1. ^ Kotz, Samuel; Dorp, Johan Rene Van (2004-12-08). Beyond Beta: Other Continuous Families Of Distributions With Bounded Support And Applications. World Scientific. ISBN 978-981-4481-24-3.
  • ^ "Archived copy" (PDF). www.asianscientist.com. Archived from the original (PDF) on 7 April 2014. Retrieved 12 January 2022.{{cite web}}: CS1 maint: archived copy as title (link)
  • ^ "Archived copy" (PDF). Archived from the original (PDF) on 2006-09-23. Retrieved 2006-09-23.{{cite web}}: CS1 maint: archived copy as title (link)
  • [edit]
    Retrieved from "https://en.wikipedia.org/w/index.php?title=Triangular_distribution&oldid=1217239505"

    Category: 
    Continuous distributions
    Hidden categories: 
    CS1 maint: archived copy as title
    Articles with short description
    Short description matches Wikidata
     



    This page was last edited on 4 April 2024, at 17:12 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki