Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Properties  



1.1  Linear transformation  





1.2  Summation  





1.3  Fails to be convolution-closed  







2 Related distributions  





3 Applications  





4 References  














Generalised hyperbolic distribution






Català
فارسی

Русский
Slovenščina
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Generalised hyperbolic
Parameters (real)
(real)
asymmetry parameter (real)
scale parameter (real)
location (real)
Support
PDF
Mean
Variance
MGF

The generalised hyperbolic distribution (GH) is a continuous probability distribution defined as the normal variance-mean mixture where the mixing distribution is the generalized inverse Gaussian distribution (GIG). Its probability density function (see the box) is given in terms of modified Bessel function of the second kind, denoted by .[1] It was introduced by Ole Barndorff-Nielsen, who studied it in the context of physics of wind-blown sand.[2]

Properties[edit]

Linear transformation[edit]

This class is closed under affine transformations.[1]

Summation[edit]

Barndorff-Nielsen and Halgreen proved that the GIG distribution is infinitely divisible and since the GH distribution can be obtained as a normal variance-mean mixture where the mixing distribution is the generalized inverse Gaussian distribution, Barndorff-Nielsen and Halgreen showed the GH distribution is infinitely divisible as well.[3]

Fails to be convolution-closed[edit]

An important point about infinitely divisible distributions is their connection to Lévy processes, i.e. at any point in time a Lévy process is infinitely divisibly distributed. Many families of well-known infinitely divisible distributions are so-called convolution-closed, i.e. if the distribution of a Lévy process at one point in time belongs to one of these families, then the distribution of the Lévy process at all points in time belong to the same family of distributions. For example, a Poisson process will be Poisson-distributed at all points in time, or a Brownian motion will be normally distributed at all points in time. However, a Lévy process that is generalised hyperbolic at one point in time might fail to be generalized hyperbolic at another point in time. In fact, the generalized Laplace distributions and the normal inverse Gaussian distributions are the only subclasses of the generalized hyperbolic distributions that are closed under convolution.[4]

Related distributions[edit]

As the name suggests it is of a very general form, being the superclass of, among others, the Student's t-distribution, the Laplace distribution, the hyperbolic distribution, the normal-inverse Gaussian distribution and the variance-gamma distribution.

Applications[edit]

It is mainly applied to areas that require sufficient probability of far-field behaviour[clarification needed], which it can model due to its semi-heavy tails—a property the normal distribution does not possess. The generalised hyperbolic distribution is often used in economics, with particular application in the fields of modelling financial markets and risk management, due to its semi-heavy tails.

References[edit]

  1. ^ a b Barndorff-Nielsen, Ole E.; Mikosch, Thomas; Resnick, Sidney I. (2001). Lévy Processes: Theory and Applications. Birkhäuser. ISBN 0-8176-4167-X.
  • ^ Barndorff-Nielsen, Ole (1977). "Exponentially decreasing distributions for the logarithm of particle size". Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences. 353 (1674). The Royal Society: 401–409. Bibcode:1977RSPSA.353..401B. doi:10.1098/rspa.1977.0041. JSTOR 79167.
  • ^ Barndorff-Nielsen, O.; Halgreen, Christian (1977). "Infinite Divisibility of the Hyperbolic and Generalized Inverse Gaussian Distributions". Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete. 38: 309–311. doi:10.1007/BF00533162.
  • ^ Podgórski, Krzysztof; Wallin, Jonas (9 February 2015). "Convolution-invariant subclasses of generalized hyperbolic distributions". Communications in Statistics – Theory and Methods. 45 (1): 98–103. doi:10.1080/03610926.2013.821489.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Generalised_hyperbolic_distribution&oldid=1228171149"

    Category: 
    Continuous distributions
    Hidden category: 
    Wikipedia articles needing clarification from January 2018
     



    This page was last edited on 9 June 2024, at 20:34 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki