Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 List of isotopes  





2 Palladium-103  





3 Palladium-107  





4 References  














Isotopes of palladium






Català
Чӑвашла
Čeština
Ελληνικά
Español
Esperanto
فارسی
Français

Bahasa Indonesia
Magyar
Nederlands

Русский


 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Palladium-92)

Isotopesofpalladium (46Pd)
Main isotopes[1] Decay
abun­dance half-life (t1/2) mode pro­duct
100Pd synth 3.63 d ε 100Rh
γ
102Pd 1.02% stable
103Pd synth 16.991 d ε 103Rh
104Pd 11.1% stable
105Pd 22.3% stable
106Pd 27.3% stable
107Pd trace 6.5×106 y β 107Ag
108Pd 26.5% stable
110Pd 11.7% stable
Standard atomic weight Ar°(Pd)
  • 106.42±0.01[2]
  • 106.42±0.01 (abridged)[3]
  • talk
  • edit
  • Natural palladium (46Pd) is composed of six stable isotopes, 102Pd, 104Pd, 105Pd, 106Pd, 108Pd, and 110Pd, although 102Pd and 110Pd are theoretically unstable. The most stable radioisotopes are 107Pd with a half-life of 6.5 million years, 103Pd with a half-life of 17 days, and 100Pd with a half-life of 3.63 days. Twenty-three other radioisotopes have been characterized with atomic weights ranging from 90.949 u (91Pd) to 128.96 u (129Pd). Most of these have half-lives that are less than 30 minutes except 101Pd (half-life: 8.47 hours), 109Pd (half-life: 13.7 hours), and 112Pd (half-life: 21 hours).

    The primary decay mode before the most abundant stable isotope, 106Pd, is electron capture and the primary mode after is beta decay. The primary decay product before 106Pd is rhodium and the primary product after is silver.

    Radiogenic 107Ag is a decay product of 107Pd and was first discovered in the Santa Clara meteorite of 1978.[4] The discoverers suggest that the coalescence and differentiation of iron-cored small planets may have occurred 10 million years after a nucleosynthetic event. 107Pd versus Ag correlations observed in bodies, which have clearly been melted since accretion of the Solar System, must reflect the presence of short-lived nuclides in the early Solar System.[5]

    List of isotopes[edit]

    Nuclide
    [n 1]
    Z N Isotopic mass (Da)
    [n 2][n 3]
    Half-life
    [n 4]
    Decay
    mode

    [n 5]
    Daughter
    isotope

    [n 6]
    Spin and
    parity
    [n 7][n 4]
    Natural abundance (mole fraction)
    Excitation energy[n 4] Normal proportion Range of variation
    91Pd 46 45 90.94911(61)# 10# ms [>1.5 μs] β+ 91Rh 7/2+#
    92Pd 46 46 91.94042(54)# 1.1(3) s [0.7(+4−2) s] β+ 92Rh 0+
    93Pd 46 47 92.93591(43)# 1.07(12s β+ 93Rh (9/2+)
    93mPd 0+X keV 9.3(+25−17) s
    94Pd 46 48 93.92877(43)# 9.0(5s β+ 94Rh 0+
    94mPd 4884.4(5) keV 530(10ns (14+)
    95Pd 46 49 94.92469(43)# 10# s β+ 95Rh 9/2+#
    95mPd 1860(500)# keV 13.3(3s β+ (94.1%) 95Rh (21/2+)
    IT (5%) 95Pd
    β+, p (.9%) 94Ru
    96Pd 46 50 95.91816(16) 122(2s β+ 96Rh 0+
    96mPd 2530.8(1) keV 1.81(1) μs 8+
    97Pd 46 51 96.91648(32) 3.10(9) min β+ 97Rh 5/2+#
    98Pd 46 52 97.912721(23) 17.7(3) min β+ 98Rh 0+
    99Pd 46 53 98.911768(16) 21.4(2) min β+ 99Rh (5/2)+
    100Pd 46 54 99.908506(12) 3.63(9d EC 100Rh 0+
    101Pd 46 55 100.908289(19) 8.47(6h β+ 101Rh 5/2+
    102Pd 46 56 101.905609(3) Observationally Stable[n 8] 0+ 0.0102(1)
    103Pd[n 9] 46 57 102.906087(3) 16.991(19d EC 103Rh 5/2+
    103mPd 784.79(10) keV 25(2ns 11/2−
    104Pd 46 58 103.904036(4) Stable 0+ 0.1114(8)
    105Pd[n 10] 46 59 104.905085(4) Stable 5/2+ 0.2233(8)
    106Pd[n 10] 46 60 105.903486(4) Stable 0+ 0.2733(3)
    107Pd[n 11] 46 61 106.905133(4) 6.5(3)×106y β 107Ag 5/2+ trace[n 12]
    107m1Pd 115.74(12) keV 0.85(10) μs 1/2+
    107m2Pd 214.6(3) keV 21.3(5s IT 107Pd 11/2−
    108Pd[n 10] 46 62 107.903892(4) Stable 0+ 0.2646(9)
    109Pd[n 10] 46 63 108.905950(4) 13.7012(24h β 109mAg 5/2+
    109m1Pd 113.400(10) keV 380(50ns 1/2+
    109m2Pd 188.990(10) keV 4.696(3) min IT 109Pd 11/2−
    110Pd[n 10] 46 64 109.905153(12) Observationally Stable[n 13] 0+ 0.1172(9)
    111Pd 46 65 110.907671(12) 23.4(2) min β 111mAg 5/2+
    111mPd 172.18(8) keV 5.5(1h IT 111Pd 11/2−
    β 111mAg
    112Pd 46 66 111.907314(19) 21.03(5h β 112Ag 0+
    113Pd 46 67 112.91015(4) 93(5s β 113mAg (5/2+)
    113mPd 81.1(3) keV 0.3(1s IT 113Pd (9/2−)
    114Pd 46 68 113.910363(25) 2.42(6) min β 114Ag 0+
    115Pd 46 69 114.91368(7) 25(2s β 115mAg (5/2+)#
    115mPd 89.18(25) keV 50(3s β (92%) 115Ag (11/2−)#
    IT (8%) 115Pd
    116Pd 46 70 115.91416(6) 11.8(4s β 116Ag 0+
    117Pd 46 71 116.91784(6) 4.3(3s β 117mAg (5/2+)
    117mPd 203.2(3) keV 19.1(7ms IT 117Pd (11/2−)#
    118Pd 46 72 117.91898(23) 1.9(1s β 118Ag 0+
    119Pd 46 73 118.92311(32)# 0.92(13s β 119Ag
    120Pd 46 74 119.92469(13) 0.5(1s β 120Ag 0+
    121Pd 46 75 120.92887(54)# 285 ms β 121Ag
    122Pd 46 76 121.93055(43)# 175 ms [>300 ns] β 122Ag 0+
    123Pd 46 77 122.93493(64)# 108 ms β 123Ag
    124Pd 46 78 123.93688(54)# 38 ms β 124Ag 0+
    125Pd[6] 46 79 57 ms β 125Ag
    126Pd[7][8] 46 80 48.6 ms β 126Ag 0+
    126m1Pd 2023 keV 330 ns IT 126Pd 5−
    126m2Pd 2110 keV 440 ns IT 126m1Pd 7−
    127Pd 46 81 38 ms β 127Ag
    128Pd[7][8] 46 82 35 ms β 128Ag 0+
    128mPd 2151 keV 5.8 μs IT 128Pd 8+
    129Pd 46 83 31 ms β 129Ag
    This table header & footer:
    1. ^ mPd – Excited nuclear isomer.
  • ^ ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  • ^ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  • ^ a b c # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  • ^ Modes of decay:
    EC: Electron capture
    IT: Isomeric transition


    p: Proton emission
  • ^ Bold symbol as daughter – Daughter product is stable.
  • ^ ( ) spin value – Indicates spin with weak assignment arguments.
  • ^ Believed to decay by β+β+to102Ru
  • ^ Used in medicine
  • ^ a b c d e Fission product
  • ^ Long-lived fission product
  • ^ Cosmogenic nuclide, also found as nuclear contamination
  • ^ Believed to decay by ββto110Cd with a half-life over 6×1017 years
  • Palladium-103[edit]

    Palladium-103 is a radioisotope of the element palladium that has uses in radiation therapy for prostate cancer and uveal melanoma. Palladium-103 may be created from palladium-102 or from rhodium-103 using a cyclotron. Palladium-103 has a half-life of 16.99[9] days and decays by electron capturetorhodium-103, emitting characteristic x-rays with 21 keVofenergy.

    Palladium-107[edit]

  • e
  • Nuclide t12 Yield Q[a 1] βγ
    (Ma) (%)[a 2] (keV)
    99Tc 0.211 6.1385 294 β
    126Sn 0.230 0.1084 4050[a 3] βγ
    79Se 0.327 0.0447 151 β
    135Cs 1.33 6.9110[a 4] 269 β
    93Zr 1.53 5.4575 91 βγ
    107Pd 6.5   1.2499 33 β
    129I 15.7   0.8410 194 βγ
    1. ^ Decay energy is split among β, neutrino, and γ if any.
  • ^ Per 65 thermal neutron fissions of 235U and 35 of 239Pu.
  • ^ Has decay energy 380 keV, but its decay product 126Sb has decay energy 3.67 MeV.
  • ^ Lower in thermal reactors because 135Xe, its predecessor, readily absorbs neutrons.
  • Palladium-107 is the second-longest lived (half-life of 6.5 million years[9]) and least radioactive (decay energy only 33 keV, specific activity5×10−5 Ci/g) of the 7 long-lived fission products. It undergoes pure beta decay (without gamma radiation) to 107Ag, which is stable.

    Its yield from thermal neutron fission of uranium-235 is 0.14% per fission,[10] only 1/4 that of iodine-129, and only 1/40 those of 99Tc, 93Zr, and 135Cs. Yield from 233U is slightly lower, but yield from 239Pu is much higher, 3.2%.[10] Fast fission or fission of some heavier actinides[which?] will produce palladium-107 at higher yields.

    One source[11] estimates that palladium produced from fission contains the isotopes 104Pd (16.9%),105Pd (29.3%), 106Pd (21.3%), 107Pd (17%), 108Pd (11.7%) and 110Pd (3.8%). According to another source, the proportion of 107Pd is 9.2% for palladium from thermal neutron fission of 235U, 11.8% for 233U, and 20.4% for 239Pu (and the 239Pu yield of palladium is about 10 times that of 235U).

    Because of this dilution and because 105Pd has 11 times the neutron absorption cross section, 107Pd is not amenable to disposal by nuclear transmutation. However, as a noble metal, palladium is not as mobile in the environment as iodine or technetium.

    References[edit]

    1. ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  • ^ "Standard Atomic Weights: Palladium". CIAAW. 1979.
  • ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  • ^ W. R. Kelly; G. J. Wasserburg (1978). "Evidence for the existence of 107Pd in the early solar system". Geophysical Research Letters. 5 (12): 1079–1082. Bibcode:1978GeoRL...5.1079K. doi:10.1029/GL005i012p01079.
  • ^ J. H. Chen; G. J. Wasserburg (1990). "The isotopic composition of Ag in meteorites and the presence of 107Pd in protoplanets". Geochimica et Cosmochimica Acta. 54 (6): 1729–1743. Bibcode:1990GeCoA..54.1729C. doi:10.1016/0016-7037(90)90404-9.
  • ^ Future Plan of the Experimental Program on Synthesizing the Heaviest Element at RIKEN, Kosuke Morita Archived September 17, 2012, at the Wayback Machine
  • ^ a b H. Watanabe; et al. (2013-10-08). "Isomers in 128Pd and 126Pd: Evidence for a Robust Shell Closure at the Neutron Magic Number 82 in Exotic Palladium Isotopes" (PDF). Physical Review Letters. 111 (15): 152501. Bibcode:2013PhRvL.111o2501W. doi:10.1103/PhysRevLett.111.152501. hdl:2437/215438. PMID 24160593.
  • ^ a b "Experiments on neutron-rich atomic nuclei could help scientists to understand nuclear reactions in exploding stars". phys.org. 2013-11-29.
  • ^ a b Winter, Mark. "Isotopes of palladium". WebElements. The University of Sheffield and WebElements Ltd, UK. Retrieved 4 March 2013.
  • ^ a b Weller, A.; Ramaker, T.; Stäger, F.; Blenke, T.; Raiwa, M.; Chyzhevskyi, I.; Kirieiev, S.; Dubchak, S.; Steinhauser, G. (2021). "Detection of the Fission Product Palladium-107 in a Pond Sediment Sample from Chernobyl". Environmental Science & Technology Letters. 8 (8): 656–661. Bibcode:2021EnSTL...8..656W. doi:10.1021/acs.estlett.1c00420.
  • ^ R. P. Bush (1991). "Recovery of Platinum Group Metals from High Level Radioactive Waste" (PDF). Platinum Metals Review. 35 (4): 202–208. doi:10.1595/003214091X354202208. Archived from the original (PDF) on 2015-09-24. Retrieved 2011-04-02.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Isotopes_of_palladium&oldid=1230529412#Palladium-92"

    Categories: 
    Isotopes of palladium
    Palladium
    Lists of isotopes by element
    Hidden categories: 
    Webarchive template wayback links
    Articles with short description
    Short description with empty Wikidata description
    All articles with dead external links
    Articles with dead external links from January 2020
    Articles with permanently dead external links
     



    This page was last edited on 23 June 2024, at 07:32 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki