Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 List of isotopes  





2 Rubidium-87  





3 References  














Isotopes of rubidium






العربية
Català
Чӑвашла
Čeština
Español
فارسی
Français

Bahasa Indonesia
Magyar
Nederlands

Русский


 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Rubidium-76)

Isotopesofrubidium (37Rb)
Main isotopes[1] Decay
abun­dance half-life (t1/2) mode pro­duct
82Rb synth 1.2575 m β+ 82Kr
83Rb synth 86.2 d ε 83Kr
γ
84Rb synth 32.9 d ε 84Kr
β+ 84Kr
γ
β 84Sr
85Rb 72.2% stable
86Rb synth 18.7 d β 86Sr
γ
87Rb 27.8% 4.923×1010 y β 87Sr
Standard atomic weight Ar°(Rb)
  • 85.4678±0.0003[2]
  • 85.468±0.001 (abridged)[3]
  • talk
  • edit
  • Rubidium (37Rb) has 36 isotopes, with naturally occurring rubidium being composed of just two isotopes; 85Rb (72.2%) and the radioactive 87Rb (27.8%).

    87Rb has a half-lifeof4.92×1010 years. It readily substitutes for potassiuminminerals, and is therefore fairly widespread. 87Rb has been used extensively in dating rocks; 87Rb decays to stable strontium-87 by emission of a beta particle (an electron ejected from the nucleus). During fractional crystallization, Sr tends to become concentrated in plagioclase, leaving Rb in the liquid phase. Hence, the Rb/Sr ratio in residual magma may increase over time, resulting in rocks with increasing Rb/Sr ratios with increasing differentiation. The highest ratios (10 or higher) occur in pegmatites. If the initial amount of Sr is known or can be extrapolated, the age can be determined by measurement of the Rb and Sr concentrations and the 87Sr/86Sr ratio. The dates indicate the true age of the minerals only if the rocks have not been subsequently altered. See rubidium–strontium dating for a more detailed discussion.

    Other than 87Rb, the longest-lived radioisotopes are 83Rb with a half-life of 86.2 days, 84Rb with a half-life of 33.1 days, and 86Rb with a half-life of 18.642 days. All other radioisotopes have half-lives less than a day.

    82Rb is used in some cardiac positron emission tomography scans to assess myocardial perfusion. It has a half-life of 1.273 minutes. It does not exist naturally, but can be made from the decay of 82Sr.

    List of isotopes[edit]

    Nuclide
    [n 1]
    Z N Isotopic mass (Da)
    [n 2][n 3]
    Half-life
    [n 4][n 5]
    Decay
    mode

    [n 6]
    Daughter
    isotope

    [n 7][n 8]
    Spin and
    parity
    [n 9][n 5]
    Natural abundance (mole fraction)
    Excitation energy[n 5] Normal proportion Range of variation
    71Rb 37 34 70.96532(54)# p 70Kr 5/2−#
    72Rb 37 35 71.95908(54)# <1.5 μs p 71Kr 3+#
    72mRb 100(100)# keV 1# μs p 71Kr 1−#
    73Rb 37 36 72.95056(16)# <30 ns p 72Kr 3/2−#
    74Rb 37 37 73.944265(4) 64.76(3ms β+ 74Kr (0+)
    75Rb 37 38 74.938570(8) 19.0(12s β+ 75Kr (3/2−)
    76Rb 37 39 75.9350722(20) 36.5(6s β+ 76Kr 1(−)
    β+, α (3.8×10−7%) 72Se
    76mRb 316.93(8) keV 3.050(7) μs (4+)
    77Rb 37 40 76.930408(8) 3.77(4) min β+ 77Kr 3/2−
    78Rb 37 41 77.928141(8) 17.66(8) min β+ 78Kr 0(+)
    78mRb 111.20(10) keV 5.74(5) min β+ (90%) 78Kr 4(−)
    IT (10%) 78Rb
    79Rb 37 42 78.923989(6) 22.9(5) min β+ 79Kr 5/2+
    80Rb 37 43 79.922519(7) 33.4(7s β+ 80Kr 1+
    80mRb 494.4(5) keV 1.6(2) μs 6+
    81Rb 37 44 80.918996(6) 4.570(4h β+ 81Kr 3/2−
    81mRb 86.31(7) keV 30.5(3) min IT (97.6%) 81Rb 9/2+
    β+ (2.4%) 81Kr
    82Rb 37 45 81.9182086(30) 1.273(2) min β+ 82Kr 1+
    82mRb 69.0(15) keV 6.472(5h β+ (99.67%) 82Kr 5−
    IT (.33%) 82Rb
    83Rb 37 46 82.915110(6) 86.2(1d EC 83Kr 5/2−
    83mRb 42.11(4) keV 7.8(7ms IT 83Rb 9/2+
    84Rb 37 47 83.914385(3) 33.1(1d β+ (96.2%) 84Kr 2−
    β (3.8%) 84Sr
    84mRb 463.62(9) keV 20.26(4) min IT (>99.9%) 84Rb 6−
    β+ (<.1%) 84Kr
    85Rb[n 10] 37 48 84.911789738(12) Stable 5/2− 0.7217(2)
    86Rb 37 49 85.91116742(21) 18.642(18d β (99.9948%) 86Sr 2−
    EC (.0052%) 86Kr
    86mRb 556.05(18) keV 1.017(3) min IT 86Rb 6−
    87Rb[n 11][n 12][n 10] 37 50 86.909180527(13) 4.923(22)×1010 y β 87Sr 3/2− 0.2783(2)
    88Rb 37 51 87.91131559(17) 17.773(11) min β 88Sr 2−
    89Rb 37 52 88.912278(6) 15.15(12) min β 89Sr 3/2−
    90Rb 37 53 89.914802(7) 158(5s β 90Sr 0−
    90mRb 106.90(3) keV 258(4s β (97.4%) 90Sr 3−
    IT (2.6%) 90Rb
    91Rb 37 54 90.916537(9) 58.4(4s β 91Sr 3/2(−)
    92Rb 37 55 91.919729(7) 4.492(20s β (99.98%) 92Sr 0−
    β, n (.0107%) 91Sr
    93Rb 37 56 92.922042(8) 5.84(2s β (98.65%) 93Sr 5/2−
    β, n (1.35%) 92Sr
    93mRb 253.38(3) keV 57(15) μs (3/2−,5/2−)
    94Rb 37 57 93.926405(9) 2.702(5s β (89.99%) 94Sr 3(−)
    β, n (10.01%) 93Sr
    95Rb 37 58 94.929303(23) 377.5(8ms β (91.27%) 95Sr 5/2−
    β, n (8.73%) 94Sr
    96Rb 37 59 95.93427(3) 202.8(33ms β (86.6%) 96Sr 2+
    β, n (13.4%) 95Sr
    96mRb 0(200)# keV 200# ms [>1 ms] β 96Sr 1(−#)
    IT 96Rb
    β, n 95Sr
    97Rb 37 60 96.93735(3) 169.9(7ms β (74.3%) 97Sr 3/2+
    β, n (25.7%) 96Sr
    98Rb 37 61 97.94179(5) 114(5ms β(86.14%) 98Sr (0,1)(−#)
    β, n (13.8%) 97Sr
    β, 2n (.051%) 96Sr
    98mRb 290(130) keV 96(3ms β 97Sr (3,4)(+#)
    99Rb 37 62 98.94538(13) 50.3(7ms β (84.1%) 99Sr (5/2+)
    β, n (15.9%) 98Sr
    100Rb 37 63 99.94987(32)# 51(8ms β (94.25%) 100Sr (3+)
    β, n (5.6%) 99Sr
    β, 2n (.15%) 98Sr
    101Rb 37 64 100.95320(18) 32(5ms β (69%) 101Sr (3/2+)#
    β, n (31%) 100Sr
    102Rb 37 65 101.95887(54)# 37(5ms β (82%) 102Sr
    β, n (18%) 101Sr
    103Rb[4] 37 66 26 ms β 103Sr
    104Rb[5] 37 67 35# ms (>550 ns) β? 104Sr
    105Rb[6] 37 68
    106Rb[6] 37 69
    This table header & footer:
    1. ^ mRb – Excited nuclear isomer.
  • ^ ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  • ^ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  • ^ Bold half-life – nearly stable, half-life longer than age of universe.
  • ^ a b c # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  • ^ Modes of decay:
    EC: Electron capture
    IT: Isomeric transition
    n: Neutron emission
    p: Proton emission
  • ^ Bold italics symbol as daughter – Daughter product is nearly stable.
  • ^ Bold symbol as daughter – Daughter product is stable.
  • ^ ( ) spin value – Indicates spin with weak assignment arguments.
  • ^ a b Fission product
  • ^ Primordial radionuclide
  • ^ Used in rubidium–strontium dating
  • Rubidium-87[edit]

    Rubidium-87 was the first and the most popular atom for making Bose–Einstein condensates in dilute atomic gases. Even though rubidium-85 is more abundant, rubidium-87 has a positive scattering length, which means it is mutually repulsive, at low temperatures. This prevents a collapse of all but the smallest condensates. It is also easy to evaporatively cool, with a consistent strong mutual scattering. There is also a strong supply of cheap uncoated diode lasers typically used in CD writers, which can operate at the correct wavelength.

    Rubidium-87 has an atomic mass of 86.9091835 u, and a binding energy of 757,853 keV. Its atomic percent abundance is 27.835%, and has a half-life of 4.92×1010 years.

    References[edit]

    1. ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  • ^ "Standard Atomic Weights: Rubidium". CIAAW. 1969.
  • ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  • ^ Ohnishi, Tetsuya; Kubo, Toshiyuki; Kusaka, Kensuke; et al. (2010). "Identification of 45 New Neutron-Rich Isotopes Produced by In-Flight Fission of a 238U Beam at 345 MeV/nucleon". J. Phys. Soc. Jpn. 79 (7). Physical Society of Japan: 073201. arXiv:1006.0305. Bibcode:2010JPSJ...79g3201T. doi:10.1143/JPSJ.79.073201.
  • ^ Shimizu, Yohei; et al. (2018). "Observation of New Neutron-rich Isotopes among Fission Fragments from In-flight Fission of 345 MeV/Nucleon 238U: Search for New Isotopes Conducted Concurrently with Decay Measurement Campaigns". Journal of the Physical Society of Japan. 87 (1): 014203. Bibcode:2018JPSJ...87a4203S. doi:10.7566/JPSJ.87.014203.
  • ^ a b Sumikama, T.; et al. (2021). "Observation of new neutron-rich isotopes in the vicinity of 110Zr". Physical Review C. 103 (1): 014614. Bibcode:2021PhRvC.103a4614S. doi:10.1103/PhysRevC.103.014614. hdl:10261/260248. S2CID 234019083.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Isotopes_of_rubidium&oldid=1218662013#Rubidium-76"

    Categories: 
    Isotopes of rubidium
    Rubidium
    Lists of isotopes by element
    Hidden categories: 
    Articles with short description
    Short description with empty Wikidata description
    Articles needing additional references from May 2018
    All articles needing additional references
     



    This page was last edited on 13 April 2024, at 01:29 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki