Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Synthesis  



1.1  Preparation of aromatic nitro compounds  





1.2  Preparation of aliphatic nitro compounds  



1.2.1  Ter Meer Reaction  









2 Occurrence  



2.1  In nature  





2.2  In pharmaceuticals  







3 Reactions  



3.1  Dye syntheses  





3.2  Biochemical reactions  





3.3  Explosions  







4 See also  





5 References  














Nitro compound: Difference between revisions






Afrikaans
العربية
Azərbaycanca
Čeština
Dansk
Deutsch
Ελληνικά
Español
Euskara
فارسی
Français
Galego

Հայերեն
ि
Hrvatski
Bahasa Indonesia
Italiano

Қазақша
Latviešu
Magyar

Plattdüütsch
Polski
Português
Română
Русский
Simple English
Slovenščina
Српски / srpski
Srpskohrvatski / српскохрватски
Svenska
Türkçe
Українська

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
Wikiquote
 
















Appearance
   

 





Help
 

From Wikipedia, the free encyclopedia
 


Browse history interactively
 Previous edit
Content deleted Content added
+hatnote. 1 relink to hydron. moved image up. checked links (rescued 1). merged semi-split paragraph.
→‎Reactions: most relevant link
 
(38 intermediate revisions by 23 users not shown)
Line 1: Line 1:

{{Short description|Organic compound containing an −NO₂ group}}

{{Distinguish|Nitrate ester}}

{{Distinguish|Nitrate ester}}

{{see also|Transition metal nitrite complex}}

{{Use dmy dates|date=May 2013}}

{{Use dmy dates|date=December 2022}}

[[File:Nitro-group-2D.png|thumb|right|150px|The structure of the nitro group]]

[[File:Nitro-group.svg|thumb|right|150px|The structure of an organic nitro compound]]

'''Nitro compounds''' are [[organic compound]]s that contain one or more '''nitro''' [[functional group]]s ({{nitrogen}}{{oxygen}}<sub>2</sub>). The nitro group is one of the most common [[explosophore]]s (functional group that makes a compound explosive) used globally. The nitro group is also strongly [[electron-withdrawing group|electron-withdrawing]]. Because of this property, C−H bonds alpha (adjacent) to the nitro group can be acidic. For similar reasons, the presence of nitro groups in aromatic compounds retards [[electrophilic aromatic substitution]] but facilitates [[nucleophilic aromatic substitution]]. Nitro groups are rarely found in nature. They are almost invariably produced by nitration reactions starting with [[nitric acid]].<ref>{{cite book |title=Nitro and Nitroso Groups: Part 2, Volume 2 |year=1970 |editor=Henry Feuer |isbn=9780470771174 |doi=10.1002/9780470771174 |publisher=John Wiley & Sons Ltd. |series=PATAI'S Chemistry of Functional Groups}}{{cite book |title=Nitro and Nitroso Groups: Supplement F: Part 2, Volume 2 |year=1982 |editor=Saul Patai |isbn=9780470771679 |doi=10.1002/9780470771679 |publisher=John Wiley & Sons Ltd. |series=PATAI'S Chemistry of Functional Groups}}{{cite book |title=Amino, Nitrosco and Nitro Compounds and Their Derivatives: Supplement F: Part 1, Volume 1 |year=1982 |editor=Saul Patai |isbn=9780470771662 |doi=10.1002/9780470771662 |publisher=John Wiley & Sons Ltd. |series=PATAI'S Chemistry of Functional Groups}}</ref>


In [[organic chemistry]], '''nitro compounds''' are [[organic compound]]s that contain one or more '''nitro''' [[functional group]]s ({{chem2|\sNO2}}). The nitro group is one of the most common [[explosophore]]s (functional group that makes a compound explosive) used globally. The nitro group is also strongly [[electron-withdrawing group|electron-withdrawing]]. Because of this property, {{chem2|[[Carbon–hydrogen bond|C\sH]]}} bonds alpha (adjacent) to the nitro group can be acidic. For similar reasons, the presence of nitro groups in aromatic compounds retards [[electrophilic aromatic substitution]] but facilitates [[nucleophilic aromatic substitution]]. Nitro groups are rarely found in nature. They are almost invariably produced by nitration reactions starting with [[nitric acid]].<ref>{{cite book |title=Nitro and Nitroso Groups: Part 2, Volume 2 |year=1970 |editor=Henry Feuer |isbn=978-0-470-77117-4 |doi=10.1002/9780470771174 |publisher=John Wiley & Sons Ltd. |series=PATAI'S Chemistry of Functional Groups|volume=2 }}{{cite book |title=Nitro and Nitroso Groups: Supplement F: Part 2, Volume 2 |year=1982 |editor=Saul Patai |isbn=978-0-470-77167-9 |doi=10.1002/9780470771679 |publisher=John Wiley & Sons Ltd. |series=PATAI'S Chemistry of Functional Groups}}{{cite book |title=Amino, Nitroso and Nitro Compounds and Their Derivatives: Supplement F: Part 1, Volume 1 |year=1982 |editor=Saul Patai |isbn=978-0-470-77166-2 |doi=10.1002/9780470771662 |publisher=John Wiley & Sons Ltd. |series=PATAI'S Chemistry of Functional Groups}}</ref>



==Synthesis==

==Synthesis==

===Preparation of aromatic nitro compounds ===

===Preparation of aromatic nitro compounds ===

[[File:PhNO2&metric.png|thumb|144px|Structural details of [[nitrobenzene]], distances in picometers.<ref>{{cite journal |journal=Structural Chemistry |year=2007 |volume=18 |issue=6 |pages=739–753 |title=Molecular Structure and Conformation of Nitrobenzene Reinvestigated by Combined Analysis of Gas-Phase Electron Diffraction, Rotational Constants, and Theoretical Calculations |authors=Olga V. Dorofeeva, Yuriy V. Vishnevskiy, Natalja Vogt, Jürgen Vogt, Lyudmila V. Khristenko, Sergey V. Krasnoshchekov, Igor F. Shishkov, István Hargittai, Lev V. Vilkov |doi=10.1007/s11224-007-9186-6 |s2cid=98746905}}</ref>]]

[[File:PhNO2&metric.png|thumb|144px|Structural details of [[nitrobenzene]], distances in picometers.<ref>{{cite journal |journal=Structural Chemistry |year=2007 |volume=18 |issue=6 |pages=739–753 |title=Molecular Structure and Conformation of Nitrobenzene Reinvestigated by Combined Analysis of Gas-Phase Electron Diffraction, Rotational Constants, and Theoretical Calculations |author=Olga V. Dorofeeva |author2=Yuriy V. Vishnevskiy |author3=Natalja Vogt |author4=Jürgen Vogt |author5=Lyudmila V. Khristenko |author6=Sergey V. Krasnoshchekov |author7=Igor F. Shishkov |author8=István Hargittai |author9=Lev V. Vilkov |doi=10.1007/s11224-007-9186-6 |s2cid=98746905}}</ref>]]



Aromatic nitro compounds are typically synthesized by nitration. Nitration is achieved using a mixture of [[nitric acid]] and [[sulfuric acid]], which produce the [[nitronium]] ion ({{chem2|NO2+}}), which is the electrophile:

Aromatic nitro compounds are typically synthesized by nitration. Nitration is achieved using a mixture of [[nitric acid]] and [[sulfuric acid]], which produce the [[nitronium]] ion ({{chem2|NO2+}}), which is the electrophile:

<div>{{pad|1em}}[[File:Benzol.svg|x60px|Benzene]]&ensp;+&ensp;[[File:Nitronium ion vert.svg|x60px|Nitronium ion]]&ensp;{{Biochem reaction subunit|direction=forward|for_prod={{H+|nolink=y}}|imagesize=60px|container_style=vertical-align:middle}}&ensp;[[File:Nitrobenzol.svg|x100px|Nitrobenzene]]</div>

<div>{{pad|1em}}[[File:Benzol.svg|x60px|Benzene]] + [[File:Nitronium ion vert.svg|x60px|Nitronium ion]] {{Biochem reaction subunit|direction=forward|for_prod={{H+|nolink=y}}|imagesize=60px|container_style=vertical-align:middle}} [[File:Nitrobenzol.svg|x100px|Nitrobenzene]]</div>



The nitration product produced on the largest scale, by far, is [[nitrobenzene]]. Many explosives are produced by nitration including [[trinitrophenol]] (picric acid), [[trinitrotoluene]] (TNT), and [[trinitroresorcinol]] (styphnic acid).<ref>{{Ullmann|last=Gerald|first=Booth|title=Nitro Compounds, Aromatic|doi=10.1002/14356007.a17_411}}</ref>

The nitration product produced on the largest scale, by far, is [[nitrobenzene]]. Many explosives are produced by nitration including [[trinitrophenol]] (picric acid), [[trinitrotoluene]] (TNT), and [[trinitroresorcinol]] (styphnic acid).<ref>{{Ullmann|last=Gerald|first=Booth|title=Nitro Compounds, Aromatic|doi=10.1002/14356007.a17_411}}</ref>

Line 16: Line 19:

===Preparation of aliphatic nitro compounds ===

===Preparation of aliphatic nitro compounds ===

Aliphatic nitro compounds can be synthesized by various methods; notable examples include:

Aliphatic nitro compounds can be synthesized by various methods; notable examples include:

*[[Free radical]] [[nitration]] of [[alkane]]s.<ref>{{cite book|last1=Markofsky|first1=Sheldon|last2=Grace|first2=W.G.|title=Nitro Compounds, Aliphatic|journal=Ullmann's Encyclopedia of Industrial Chemistry|date=2000|doi=10.1002/14356007.a17_401|isbn=978-3527306732}}</ref> The reaction produces fragments from the parent alkane, creating a diverse mixture of products; for instance, [[nitromethane]], [[nitroethane]], [[1-Nitropropane|1-nitropropane]], and [[2-Nitropropane|2-nitropropane]] are produced by treating [[propane]] with [[nitric acid]] in the gas phase (e.g. 350–450&nbsp;°C and 8–12 [[Atmosphere (unit)|atm]]).

*[[Free radical]] [[nitration]] of [[alkane]]s.<ref>{{cite journal|last1=Markofsky|first1=Sheldon|last2=Grace|first2=W.G.|title=Nitro Compounds, Aliphatic|journal=Ullmann's Encyclopedia of Industrial Chemistry|date=2000|doi=10.1002/14356007.a17_401|isbn=978-3-527-30673-2}}</ref> The reaction produces fragments from the parent alkane, creating a diverse mixture of products; for instance, [[nitromethane]], [[nitroethane]], [[1-Nitropropane|1-nitropropane]], and [[2-Nitropropane|2-nitropropane]] are produced by treating [[propane]] with [[nitric acid]] in the gas phase (e.g. 350–450&nbsp;°C and 8–12 [[Atmosphere (unit)|atm]]).

*[[Nucleophilic substitution]] reactions between [[halocarbon]]s<ref>{{cite journal|last1=Kornblum|first1=N.|last2=Ungnade|first2=H. E.|title=1-Nitroöctane|journal=Organic Syntheses|date=1963|volume=4|page=724|doi=10.15227/orgsyn.038.0075}}</ref> or [[organosulfate]]s<ref>{{cite journal|last1=Walden|first1=P.|title=Zur Darstellung aliphatischer Sulfocyanide, Cyanide und Nitrokörper|journal=Berichte der Deutschen Chemischen Gesellschaft|date=1907|volume=40|issue=3|pages=3214–3217|doi=10.1002/cber.19070400383|url=https://zenodo.org/record/1426247}}</ref> with [[Silver nitrite|silver]] or [[Alkali metal|alkali]] [[nitrite]] salts.

*[[Nucleophilic substitution]] reactions between [[halocarbon]]s<ref>{{cite journal|last1=Kornblum|first1=N.|last2=Ungnade|first2=H. E.|title=1-Nitroöctane|journal=Organic Syntheses|date=1963|volume=4|page=724|doi=10.15227/orgsyn.038.0075}}</ref> or [[organosulfate]]s<ref>{{cite journal|last1=Walden|first1=P.|title=Zur Darstellung aliphatischer Sulfocyanide, Cyanide und Nitrokörper|journal=Berichte der Deutschen Chemischen Gesellschaft|date=1907|volume=40|issue=3|pages=3214–3217|doi=10.1002/cber.19070400383|url=https://zenodo.org/record/1426247}}</ref> with [[Silver nitrite|silver]] or [[Alkali metal|alkali]] [[nitrite]] salts.

*Nitromethane can be produced in the laboratory by treating [[chloroacetic acid|sodium chloroacetate]] with [[sodium nitrite]].<ref>{{cite journal|last1=Whitmore|first1=F. C.|last2=Whitmore|first2=Marion G.|title=Nitromethane|journal=Organic Syntheses|date=1923|volume=1|page=401|doi=10.15227/orgsyn.003.0083}}</ref>

*Nitromethane can be produced in the laboratory by treating [[chloroacetic acid|sodium chloroacetate]] with [[sodium nitrite]].<ref>{{cite journal|last1=Whitmore|first1=F. C.|last2=Whitmore|first2=Marion G.|title=Nitromethane|journal=Organic Syntheses|date=1923|volume=1|page=401|doi=10.15227/orgsyn.003.0083}}</ref>

*[[Organic redox reaction|Oxidation]] of [[oxime]]s<ref>{{cite journal|last1=Olah|first1=George A.|last2=Ramaiah|first2=Pichika|last3=Chang-Soo|first3=Lee|last4=Prakash|first4=Surya|title=Convenient Oxidation of Oximes to Nitro Compounds with Sodium Perborate in Glacial Acetic Acid|journal=Synlett|date=1992|volume=1992|issue=4|pages=337–339|doi=10.1055/s-1992-22006}}</ref> or [[Primary (chemistry)|primary]] [[amine]]s.<ref>{{cite journal|last1=Ehud|first1=Keinan|last2=Yehuda|first2=Mazur|title=Dry ozonation of amines. Conversion of primary amines to nitro compounds|journal=The Journal of Organic Chemistry|date=1977|volume=42|issue=5|pages=844–847|doi=10.1021/jo00425a017}}</ref>

*[[Organic redox reaction|Oxidation]] of [[oxime]]s<ref>{{cite journal|last1=Olah|first1=George A.|last2=Ramaiah|first2=Pichika|last3=Chang-Soo|first3=Lee|last4=Prakash|first4=Surya|title=Convenient Oxidation of Oximes to Nitro Compounds with Sodium Perborate in Glacial Acetic Acid|journal=Synlett|date=1992|volume=1992|issue=4|pages=337–339|doi=10.1055/s-1992-22006}}</ref> or [[Primary (chemistry)|primary]] [[amine]]s.<ref>{{cite journal|last1=Ehud|first1=Keinan|last2=Yehuda|first2=Mazur|title=Dry ozonation of amines. Conversion of primary amines to nitro compounds|journal=The Journal of Organic Chemistry|date=1977|volume=42|issue=5|pages=844–847|doi=10.1021/jo00425a017}}</ref>

*Reduction of [[Henry reaction|β-nitro alcohols]]<ref>{{cite journal |last1=Chandrasekhar |first1=S. |last2=Shrinidhi |first2=A. |title=Useful Extensions of the Henry Reaction: Expeditious Routes to Nitroalkanes and Nitroalkenes in Aqueous Media |journal=Synthetic Communications |date=2014 |volume=44 |issue=20 |pages=3008–3018 |doi=10.1080/00397911.2014.926373|s2cid=98439096 }}</ref> or [[Nitroalkene|nitroalkenes]].<ref>{{cite journal |last1=Shrinidhi |first1=A. |title=Microwave-assisted chemoselective reduction of conjugated nitroalkenes to nitroalkanes with aqueous tri-n-butyltin hydride |journal=Cogent Chemistry |date=2015 |volume=1 |issue=1 |pages=1061412 |doi=10.1080/23312009.2015.1061412|doi-access=free }}</ref>

*Reduction of [[Henry reaction|β-nitro alcohols]]<ref>{{cite journal |last1=Chandrasekhar |first1=S. |last2=Shrinidhi |first2=A. |title=Useful Extensions of the Henry Reaction: Expeditious Routes to Nitroalkanes and Nitroalkenes in Aqueous Media |journal=Synthetic Communications |date=2014 |volume=44 |issue=20 |pages=3008–3018 |doi=10.1080/00397911.2014.926373|s2cid=98439096 |url=https://figshare.com/articles/journal_contribution/1053153 }}</ref> or [[nitroalkene]]s.<ref>{{cite journal |last1=Shrinidhi |first1=A. |title=Microwave-assisted chemoselective reduction of conjugated nitroalkenes to nitroalkanes with aqueous tri-n-butyltin hydride |journal=Cogent Chemistry |date=2015 |volume=1 |issue=1 |page=1061412 |doi=10.1080/23312009.2015.1061412|doi-access=free }}</ref>

*By [[decarboxylation]] of [[alpha and beta carbon|α]]-nitro [[carboxylic acid]]s formed from [[nitriles]] and [[ethyl nitrate]].<ref>{{cite journal|last1=Wislicenus|first1=Wilhelm|last2=Endres|first2=Anton|title=Ueber Nitrirung mittels Aethylnitrat [Nitrification by means of ethyl nitrate]|journal=Berichte der Deutschen Chemischen Gesellschaft|date=1902|volume=35|issue=2|pages=1755–1762|doi=10.1002/cber.190203502106|url=https://zenodo.org/record/1426046}}</ref><ref>{{cite book|last1=Weygand|first1=Conrad|editor1-last=Hilgetag|editor1-first=G.|editor2-last=Martini|editor2-first=A.|title=Weygand/Hilgetag Preparative Organic Chemistry|date=1972|publisher=John Wiley & Sons, Inc.|location=New York|isbn=978-0471937494|page=1007|edition=4th}}</ref>

*By [[decarboxylation]] of [[alpha and beta carbon|α]]-nitro [[carboxylic acid]]s formed from [[nitriles]] and [[ethyl nitrate]].<ref>{{cite journal|last1=Wislicenus|first1=Wilhelm|last2=Endres|first2=Anton|title=Ueber Nitrirung mittels Aethylnitrat [Nitrification by means of ethyl nitrate]|journal=Berichte der Deutschen Chemischen Gesellschaft|date=1902|volume=35|issue=2|pages=1755–1762|doi=10.1002/cber.190203502106|url=https://zenodo.org/record/1426046}}</ref><ref>{{cite book|last1=Weygand|first1=Conrad|editor1-last=Hilgetag|editor1-first=G.|editor2-last=Martini|editor2-first=A.|title=Weygand/Hilgetag Preparative Organic Chemistry|date=1972|publisher=John Wiley & Sons, Inc.|location=New York|isbn=978-0-471-93749-4|page=1007|edition=4th}}</ref>



====Ter Meer Reaction====

====Ter Meer Reaction====

Line 37: Line 40:

:[[File:Ter Meer Reaction.svg|The ter Meer reaction]]

:[[File:Ter Meer Reaction.svg|The ter Meer reaction]]



The [[reaction mechanism]] is proposed in which in the first slow step a [[hydron|proton]] is abstracted from nitroalkane '''1''' to a [[carbanion]] '''2''' followed by [[protonation]] to an aci-nitro '''3''' and finally [[nucleophilic displacement]] of chlorine based on an experimentally observed hydrogen [[kinetic isotope effect]] of 3.3.<ref>{{cite journal |doi=10.1021/ja01600a048 |title=Aci-Nitroalkanes. I. The Mechanism of the ter Meer Reaction1 |journal=Journal of the American Chemical Society |volume=78 |issue=19 |pages=4980–4984 |year=1956 |last1=Hawthorne |first1=M. Frederick}}</ref> When the same reactant is reacted with [[potassium hydroxide]] the reaction product is the 1,2-dinitro dimer.<ref>''3-Hexene, 3,4-dinitro-'' D. E. Bisgrove, J. F. Brown, Jr., and L. B. Clapp. ''[[Organic Syntheses]]'', Coll. Vol. 4, p.372 (1963); Vol. 37, p.23 (1957). ([http://www.orgsynth.org/orgsyn/pdfs/CV4P0372.pdf Article])</ref>

The [[reaction mechanism]] is proposed in which in the first slow step a [[Hydron (chemistry)|proton]] is abstracted from nitroalkane '''1''' to a [[carbanion]] '''2''' followed by [[protonation]] to an aci-nitro '''3''' and finally [[nucleophilic displacement]] of chlorine based on an experimentally observed hydrogen [[kinetic isotope effect]] of 3.3.<ref>{{cite journal |doi=10.1021/ja01600a048 |title=Aci-Nitroalkanes. I. The Mechanism of the ter Meer Reaction1 |journal=Journal of the American Chemical Society |volume=78 |issue=19 |pages=4980–4984 |year=1956 |last1=Hawthorne |first1=M. Frederick}}</ref> When the same reactant is reacted with [[potassium hydroxide]] the reaction product is the 1,2-dinitro dimer.<ref>''3-Hexene, 3,4-dinitro-'' D. E. Bisgrove, J. F. Brown, Jr., and L. B. Clapp. ''[[Organic Syntheses]]'', Coll. Vol. 4, p. 372 (1963); Vol. 37, p. 23 (1957). ([http://www.orgsynth.org/orgsyn/pdfs/CV4P0372.pdf Article])</ref>



==Occurrence==

==Occurrence==

Line 43: Line 46:

[[Chloramphenicol]] is a rare example of a [[natural product|naturally occurring]] nitro compound. At least some naturally occurring nitro groups arose by the oxidation of amino groups.<ref>{{cite journal |doi=10.1016/j.jmb.2007.06.014 |pmid=17765264 |title=Structure and Action of the N-oxygenase AurF from Streptomyces thioluteus |journal=Journal of Molecular Biology |volume=373 |issue=1 |pages=65–74 |year=2007 |last1=Zocher |first1=Georg |last2=Winkler |first2=Robert |last3=Hertweck |first3=Christian |last4=Schulz |first4=Georg E}}</ref> [[2-Nitrophenol]] is an aggregation [[pheromone]] of [[tick]]s.

[[Chloramphenicol]] is a rare example of a [[natural product|naturally occurring]] nitro compound. At least some naturally occurring nitro groups arose by the oxidation of amino groups.<ref>{{cite journal |doi=10.1016/j.jmb.2007.06.014 |pmid=17765264 |title=Structure and Action of the N-oxygenase AurF from Streptomyces thioluteus |journal=Journal of Molecular Biology |volume=373 |issue=1 |pages=65–74 |year=2007 |last1=Zocher |first1=Georg |last2=Winkler |first2=Robert |last3=Hertweck |first3=Christian |last4=Schulz |first4=Georg E}}</ref> [[2-Nitrophenol]] is an aggregation [[pheromone]] of [[tick]]s.



Examples of nitro compounds are rare in nature. [[3-Nitropropionic acid]] found in [[fungus|fungi]] and plants (''[[Indigofera]]''). [[Nitropentadecene]] is a defense compound found in [[termite]]s. Nitrophenylethane is found in ''Aniba canelilla''.<ref>{{cite journal | last=Maia | first=José Guilherme S. | last2=Andrade | first2=Eloísa Helena A. | title=Database of the Amazon aromatic plants and their essential oils | journal=Química Nova | publisher=FapUNIFESP (SciELO) | volume=32 | issue=3 | year=2009 | issn=0100-4042 | doi=10.1590/s0100-40422009000300006 | pages=595–622 |url=http://www.scielo.br/pdf/qn/v32n3/a06v32n3.pdf| doi-access=free }}</ref> Nitrophenylethane is also found in members of the [[Annonaceae]], [[Lauraceae]] and [[Papaveraceae]].<ref>{{cite book | last=Kramer | first=K.U. | last2=Kubitzki | first2=K. | last3=Rohwer | first3=J.G. | last4=Bittrich | first4=V. | title=Flowering Plants, Dicotyledons: Magnoliid, Hamamelid, and Caryophyllid Families | publisher=Springer-Verlag, Berlin | series=Families and genera of vascular plants | year=1993 | isbn=978-3-540-55509-4 | url=https://books.google.com/books?id=K_pGAAAAYAAJ}}</ref>

Examples of nitro compounds are rare in nature. [[3-Nitropropionic acid]] found in [[fungus|fungi]] and plants (''[[Indigofera]]''). [[Nitropentadecene]] is a defense compound found in [[termite]]s. [[Aristolochic acid|Aristolochic acids]] are found in the flowering plant family [[Aristolochiaceae]]. Nitrophenylethane is found in ''Aniba canelilla''.<ref>{{cite journal | last1=Maia | first1=José Guilherme S. | last2=Andrade | first2=Eloísa Helena A. | title=Database of the Amazon aromatic plants and their essential oils | journal=Química Nova | publisher=FapUNIFESP (SciELO) | volume=32 | issue=3 | year=2009 | issn=0100-4042 | doi=10.1590/s0100-40422009000300006 | pages=595–622 |url=http://www.scielo.br/pdf/qn/v32n3/a06v32n3.pdf| doi-access=free }}</ref> Nitrophenylethane is also found in members of the [[Annonaceae]], [[Lauraceae]] and [[Papaveraceae]].<ref>{{cite book | last1=Kramer | first1=K.U. | last2=Kubitzki | first2=K. | last3=Rohwer | first3=J.G. | last4=Bittrich | first4=V. | title=Flowering Plants, Dicotyledons: Magnoliid, Hamamelid, and Caryophyllid Families | publisher=Springer-Verlag, Berlin | series=Families and genera of vascular plants | year=1993 | isbn=978-3-540-55509-4 | url=https://books.google.com/books?id=K_pGAAAAYAAJ}}</ref>



=== In pharmaceuticals ===

=== In pharmaceuticals ===

Despite the occasional use in pharmaceuticals, the nitro group is associated with [[mutagenicity]] and [[genotoxicity]] and therefore is often regarded as a liability in the [[drug discovery]] process.<ref name="pmid30295477">{{cite journal |vauthors=Nepali K, Lee HY, Liou JP |title=Nitro-Group-Containing Drugs |journal=J. Med. Chem. |volume=62 |issue=6 |pages=2851–2893 |date=March 2019 |pmid=30295477 |doi=10.1021/acs.jmedchem.8b00147 }}</ref>

Despite the occasional use in pharmaceuticals, the nitro group is associated with [[mutagenicity]] and [[genotoxicity]] and therefore is often regarded as a liability in the [[drug discovery]] process.<ref name="pmid30295477">{{cite journal |vauthors=Nepali K, Lee HY, Liou JP |title=Nitro-Group-Containing Drugs |journal=J. Med. Chem. |volume=62 |issue=6 |pages=2851–2893 |date=March 2019 |pmid=30295477 |doi=10.1021/acs.jmedchem.8b00147 |s2cid=52931949 }}</ref>



== Reactions of aliphatic nitro compounds==

== Reactions==

Nitro compounds participate in several [[organic reaction]]s, the most important being [[reduction of nitro compounds]] to the corresponding amines:

===Reduction===

Nitro compounds participate in several [[organic reaction]]s, the most important being their reduction to the corresponding amines:

:RNO<sub>2</sub> + 3 H<sub>2</sub> → RNH<sub>2</sub> + 2 H<sub>2</sub>O

:RNO<sub>2</sub> + 3 H<sub>2</sub> → RNH<sub>2</sub> + 2 H<sub>2</sub>O

Virtually all [[arylamine|aromatic amines]] (e.g. [[aniline]]) are derived from nitroaromatics through such [[catalytic hydrogenation]]. A variation is formation of a dimethylaminoarene with [[palladium on carbon]] and [[formaldehyde]]:<ref>{{cite journal |title=ETHYL p-DIMETHYLAMINOPHENYLACETATE |journal= Organic Syntheses|year= 1967|volume=47|page= 69|url=http://orgsyn.org/Content/pdfs/procedures/cv5p0552.pdf |doi=10.15227/orgsyn.047.0069}}</ref>

[[File:Nitrohydrogenation.svg|500px|center|Nitro compound hydrogenation]]



The [[locant|α-carbon]] of nitroalkanes is somewhat acidic. The p''K''<sub>a</sub> values of [[nitromethane]] and [[2-nitropropane]] are respectively 17.2 and 16.9 in [[dimethyl sulfoxide]] (DMSO) solution, suggesting an aqueous p''K''<sub>a</sub> of around 11.<ref>{{cite journal | doi = 10.1021/ja00099a004| title = Is Resonance Important in Determining the Acidities of Weak Acids or the Homolytic Bond Dissociation Enthalpies (BDEs) of Their Acidic H-A Bonds?| journal = Journal of the American Chemical Society| volume = 116| issue = 20| page = 8885| year = 1994| last1 = Bordwell| first1 = Frederick G| last2 = Satish| first2 = A. V}}</ref> In other words, these [[carbon acid]]s can be deprotonated in aqueous solution. The conjugate base is called a [[nitronate]], and behaves similar to an [[enolate]]. In the [[nitroaldol reaction]], it [[direct addition|adds directly]] to [[aldehyde]]s, and, with [[enone]]s, can serve as a [[Michael reaction|Michael donor]]. Conversely, a [[nitroalkene]] reacts with enols as a Michael acceptor.<ref>{{cite journal|author1=Ranganathan, Darshan |author2=Rao, Bhushan |author3=Ranganathan, Subramania |author4=Mehrotra, Ashok |author5=Iyengar, Radha |name-list-style=amp |title=Nitroethylene: a stable, clean, and reactive agent for organic synthesis|journal=The Journal of Organic Chemistry|year=1980|volume=45|issue=7|pages=1185–1189|doi=10.1021/jo01295a003}}</ref><ref>{{cite journal|author1=Jubert, Carole |author2=Knochel, Paul |name-list-style=amp |title=Preparation of polyfunctional nitro olefins and nitroalkanes using the copper-zinc reagents RCu(CN)ZnI|journal=The Journal of Organic Chemistry|year=1992|volume=57|issue=20|pages=5431–5438|doi=10.1021/jo00046a027}}</ref>

===Acid-base reactions===

The α-carbon of nitroalkanes is somewhat acidic. The p''K''<sub>a</sub> values of [[nitromethane]] and [[2-nitropropane]] are respectively 17.2 and 16.9 in [[dimethyl sulfoxide]] (DMSO) solution. These values suggest an aqueous p''K''<sub>a</sub> of around 11.<ref>{{cite journal | doi = 10.1021/ja00099a004| title = Is Resonance Important in Determining the Acidities of Weak Acids or the Homolytic Bond Dissociation Enthalpies (BDEs) of Their Acidic H-A Bonds?| journal = Journal of the American Chemical Society| volume = 116| issue = 20| pages = 8885| year = 1994| last1 = Bordwell| first1 = Frederick G| last2 = Satish| first2 = A. V}}</ref> In other words, these [[carbon acid]]s can be deprotonated in aqueous solution. The conjugate base is called a [[nitronate]], they are formed as intermediates in the [[nitroaldol reaction]] and [[Nef reaction]]s.



Nitronates are also key intermediates in the [[Nef reaction]]: when exposed to acids or oxidants, a nitronate hydrolyzes to a [[carbonyl group|carbonyl]] and [[azanone]].<ref>Smith (2020)), ''March's Organic Chemistry'', rxn.&nbsp;16-3.</ref>

===Condensation reactions===


Nitromethane undergoes base-catalyzed additions to [[aldehyde]]s in 1,2-addition in the [[nitroaldol reaction]]. Similarly, it adds to alpha-beta unsaturated carbonyl compounds as a 1,4-addition in the [[Michael reaction]] as a Michael donor. [[Nitroalkene]]s are Michael acceptors in the [[Michael reaction]] with [[enolate]] compounds.<ref>{{cite journal|author1=Ranganathan, Darshan |author2=Rao, Bhushan |author3=Ranganathan, Subramania |author4=Mehrotra, Ashok |author5=Iyengar, Radha |name-list-style=amp |title=Nitroethylene: a stable, clean, and reactive agent for organic synthesis|journal=The Journal of Organic Chemistry|year=1980|volume=45|issue=7|pages=1185–1189|doi=10.1021/jo01295a003}}</ref><ref>{{cite journal|author1=Jubert, Carole |author2=Knochel, Paul |name-list-style=amp |title=Preparation of polyfunctional nitro olefins and nitroalkanes using the copper-zinc reagents RCu(CN)ZnI|journal=The Journal of Organic Chemistry|year=1992|volume=57|issue=20|pages=5431–5438|doi=10.1021/jo00046a027}}</ref>

[[Grignard reagent]]s combine with nitro compounds to give a [[nitrone]]; but a Grignard reagent with an α hydrogen will then add again to the nitrone to give a [[hydroxylamine]] salt.<ref>{{cite journal|doi=10.1021/jo00048a012|title=Nitrones from addition of benzyl and allyl Grignard reagents to alkyl nitro compounds: chemo-, regio-, and stereoselectivity of the reaction|first1=Giuseppe|last1=Bartoli|first2=Enrico|last2=Marcantoni|first3=Marino|last3=Petrini|orig-date=14 Apr 1992|publisher=American Chemical Society|journal=Journal of Organic Chemistry|volume=57|number=22|year=1992|pages=5834–5840}}</ref>


===Dye syntheses===

The [[Leimgruber-Batcho indole synthesis|Leimgruber–Batcho]], [[Bartoli indole synthesis|Bartoli]] and [[Baeyer-Emmerling indole synthesis|Baeyer–Emmerling]] indole syntheses begin with aromatic nitro compounds. [[Indigo dye|Indigo]] can be synthesized in a condensation reaction from [[nitrobenzaldehyde|''ortho''-nitrobenzaldehyde]] and [[acetone]] in strongly basic conditions in a reaction known as the [[Baeyer–Drewson indigo synthesis]].



===Biochemical reactions===

===Biochemical reactions===

Many [[Flavin group|flavin]]-dependent [[enzyme]]s are capable of oxidizing aliphatic nitro compounds to less-toxic aldehydes and ketones. [[Nitroalkane oxidase]] and 3-nitropropionate oxidase oxidize aliphatic nitro compounds exclusively, whereas other enzymes such as [[glucose oxidase]] have other physiological substrates.<ref>{{cite journal|last1=Nagpal|first1=Akanksha|first2=Michael P. |last2=Valley |first3=Paul F. |last3=Fitzpatrick |first4=Allen M. |last4=Orville |date=2006|title=Crystal Structures of Nitroalkane Oxidase: Insights into the Reaction Mechanism from a Covalent Complex of the Flavoenzyme Trapped during Turnover|journal=Biochemistry|pmid=16430210|doi=10.1021/bi051966w|volume=45|issue=4|pmc=1855086|pages=1138–50}}</ref>

Many [[Flavin group|flavin]]-dependent [[enzyme]]s are capable of oxidizing aliphatic nitro compounds to less-toxic aldehydes and ketones. [[Nitroalkane oxidase]] and 3-nitropropionate oxidase oxidize aliphatic nitro compounds exclusively, whereas other enzymes such as [[glucose oxidase]] have other physiological substrates.<ref>{{cite journal|last1=Nagpal|first1=Akanksha|first2=Michael P. |last2=Valley |first3=Paul F. |last3=Fitzpatrick |first4=Allen M. |last4=Orville |date=2006|title=Crystal Structures of Nitroalkane Oxidase: Insights into the Reaction Mechanism from a Covalent Complex of the Flavoenzyme Trapped during Turnover|journal=Biochemistry|pmid=16430210|doi=10.1021/bi051966w|volume=45|issue=4|pmc=1855086|pages=1138–50}}</ref>


==Reactions of aromatic nitro compounds ==

[[Organic reduction|Reduction]] of aromatic nitro compounds with [[hydrogen]] over metal catalysts gives [[aniline]]s. Virtually all aromatic amines ([[aniline]]s) are derived from nitroaromatics. A variation is formation of a dimethylaminoarene with [[palladium on carbon]] and [[formaldehyde]]:<ref>{{cite journal |title=ETHYL p-DIMETHYLAMINOPHENYLACETATE |journal=Organic Syntheses, Coll. Vol. 5, p.552 (1973); Vol.47, p.69 (1967) |url=http://orgsyn.org/Content/pdfs/procedures/cv5p0552.pdf |doi=10.15227/orgsyn.047.0069}}</ref>


:[[File:Nitrohydrogenation.svg|500px|Nitro compound hydrogenation]]


The [[Leimgruber-Batcho indole synthesis|Leimgruber–Batcho]], [[Bartoli indole synthesis|Bartoli]] and [[Baeyer-Emmerling indole synthesis|Baeyer–Emmerling]] indole syntheses begin with aromatic nitro compounds. [[Indigo dye|Indigo]] can be synthesized in a condensation reaction from [[nitrobenzaldehyde|''ortho''-nitrobenzaldehyde]] and [[acetone]] in strongly basic conditions in a reaction known as the [[Baeyer–Drewson indigo synthesis]].



===Explosions===

===Explosions===

Line 81: Line 81:


==References==

==References==

{{Reflist|colwidth=31em}}

{{Reflist}}



{{Commons category|Nitro compounds}}

{{Commons category|Nitro compounds}}

{{Functional groups}}

{{Functional groups}}



{{Nitrogen compounds}}

{{Authority control}}

{{Authority control}}




Latest revision as of 02:42, 22 May 2024

The structure of an organic nitro compound

Inorganic chemistry, nitro compounds are organic compounds that contain one or more nitro functional groups (−NO2). The nitro group is one of the most common explosophores (functional group that makes a compound explosive) used globally. The nitro group is also strongly electron-withdrawing. Because of this property, C−H bonds alpha (adjacent) to the nitro group can be acidic. For similar reasons, the presence of nitro groups in aromatic compounds retards electrophilic aromatic substitution but facilitates nucleophilic aromatic substitution. Nitro groups are rarely found in nature. They are almost invariably produced by nitration reactions starting with nitric acid.[1]

Synthesis[edit]

Preparation of aromatic nitro compounds[edit]

Structural details of nitrobenzene, distances in picometers.[2]

Aromatic nitro compounds are typically synthesized by nitration. Nitration is achieved using a mixture of nitric acid and sulfuric acid, which produce the nitronium ion (NO+2), which is the electrophile:

 Benzene + Nitronium ion

 

H+

Rightward reaction arrow with minor product(s) to top right

Nitrobenzene

The nitration product produced on the largest scale, by far, is nitrobenzene. Many explosives are produced by nitration including trinitrophenol (picric acid), trinitrotoluene (TNT), and trinitroresorcinol (styphnic acid).[3] Another but more specialized method for making aryl–NO2 group starts from halogenated phenols, is the Zinke nitration.

Preparation of aliphatic nitro compounds[edit]

Aliphatic nitro compounds can be synthesized by various methods; notable examples include:

Ter Meer Reaction[edit]

Innucleophilic aliphatic substitution, sodium nitrite (NaNO2) replaces an alkyl halide. In the so-called Ter Meer reaction (1876) named after Edmund ter Meer,[14] the reactant is a 1,1-halonitroalkane:

The ter Meer reaction

The reaction mechanism is proposed in which in the first slow step a proton is abstracted from nitroalkane 1 to a carbanion 2 followed by protonation to an aci-nitro 3 and finally nucleophilic displacement of chlorine based on an experimentally observed hydrogen kinetic isotope effect of 3.3.[15] When the same reactant is reacted with potassium hydroxide the reaction product is the 1,2-dinitro dimer.[16]

Occurrence[edit]

In nature[edit]

Chloramphenicol is a rare example of a naturally occurring nitro compound. At least some naturally occurring nitro groups arose by the oxidation of amino groups.[17] 2-Nitrophenol is an aggregation pheromoneofticks.

Examples of nitro compounds are rare in nature. 3-Nitropropionic acid found in fungi and plants (Indigofera). Nitropentadecene is a defense compound found in termites. Aristolochic acids are found in the flowering plant family Aristolochiaceae. Nitrophenylethane is found in Aniba canelilla.[18] Nitrophenylethane is also found in members of the Annonaceae, Lauraceae and Papaveraceae.[19]

In pharmaceuticals[edit]

Despite the occasional use in pharmaceuticals, the nitro group is associated with mutagenicity and genotoxicity and therefore is often regarded as a liability in the drug discovery process.[20]

Reactions[edit]

Nitro compounds participate in several organic reactions, the most important being reduction of nitro compounds to the corresponding amines:

RNO2 + 3 H2 → RNH2 + 2 H2O

Virtually all aromatic amines (e.g. aniline) are derived from nitroaromatics through such catalytic hydrogenation. A variation is formation of a dimethylaminoarene with palladium on carbon and formaldehyde:[21]

Nitro compound hydrogenation
Nitro compound hydrogenation

The α-carbon of nitroalkanes is somewhat acidic. The pKa values of nitromethane and 2-nitropropane are respectively 17.2 and 16.9 in dimethyl sulfoxide (DMSO) solution, suggesting an aqueous pKa of around 11.[22] In other words, these carbon acids can be deprotonated in aqueous solution. The conjugate base is called a nitronate, and behaves similar to an enolate. In the nitroaldol reaction, it adds directlytoaldehydes, and, with enones, can serve as a Michael donor. Conversely, a nitroalkene reacts with enols as a Michael acceptor.[23][24]

Nitronates are also key intermediates in the Nef reaction: when exposed to acids or oxidants, a nitronate hydrolyzes to a carbonyl and azanone.[25]

Grignard reagents combine with nitro compounds to give a nitrone; but a Grignard reagent with an α hydrogen will then add again to the nitrone to give a hydroxylamine salt.[26]

Dye syntheses[edit]

The Leimgruber–Batcho, Bartoli and Baeyer–Emmerling indole syntheses begin with aromatic nitro compounds. Indigo can be synthesized in a condensation reaction from ortho-nitrobenzaldehyde and acetone in strongly basic conditions in a reaction known as the Baeyer–Drewson indigo synthesis.

Biochemical reactions[edit]

Many flavin-dependent enzymes are capable of oxidizing aliphatic nitro compounds to less-toxic aldehydes and ketones. Nitroalkane oxidase and 3-nitropropionate oxidase oxidize aliphatic nitro compounds exclusively, whereas other enzymes such as glucose oxidase have other physiological substrates.[27]

Explosions[edit]

Explosive decomposition of organo nitro compounds are redox reactions, wherein both the oxidant (nitro group) and the fuel (hydrocarbon substituent) are bound within the same molecule. The explosion process generates heat by forming highly stable products including molecular nitrogen (N2), carbon dioxide, and water. The explosive power of this redox reaction is enhanced because these stable products are gases at mild temperatures. Many contact explosives contain the nitro group.

See also[edit]

References[edit]

  1. ^ Henry Feuer, ed. (1970). Nitro and Nitroso Groups: Part 2, Volume 2. PATAI'S Chemistry of Functional Groups. Vol. 2. John Wiley & Sons Ltd. doi:10.1002/9780470771174. ISBN 978-0-470-77117-4.Saul Patai, ed. (1982). Nitro and Nitroso Groups: Supplement F: Part 2, Volume 2. PATAI'S Chemistry of Functional Groups. John Wiley & Sons Ltd. doi:10.1002/9780470771679. ISBN 978-0-470-77167-9.Saul Patai, ed. (1982). Amino, Nitroso and Nitro Compounds and Their Derivatives: Supplement F: Part 1, Volume 1. PATAI'S Chemistry of Functional Groups. John Wiley & Sons Ltd. doi:10.1002/9780470771662. ISBN 978-0-470-77166-2.
  • ^ Olga V. Dorofeeva; Yuriy V. Vishnevskiy; Natalja Vogt; Jürgen Vogt; Lyudmila V. Khristenko; Sergey V. Krasnoshchekov; Igor F. Shishkov; István Hargittai; Lev V. Vilkov (2007). "Molecular Structure and Conformation of Nitrobenzene Reinvestigated by Combined Analysis of Gas-Phase Electron Diffraction, Rotational Constants, and Theoretical Calculations". Structural Chemistry. 18 (6): 739–753. doi:10.1007/s11224-007-9186-6. S2CID 98746905.
  • ^ Gerald, Booth. "Nitro Compounds, Aromatic". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a17_411. ISBN 978-3527306732.
  • ^ Markofsky, Sheldon; Grace, W.G. (2000). "Nitro Compounds, Aliphatic". Ullmann's Encyclopedia of Industrial Chemistry. doi:10.1002/14356007.a17_401. ISBN 978-3-527-30673-2.
  • ^ Kornblum, N.; Ungnade, H. E. (1963). "1-Nitroöctane". Organic Syntheses. 4: 724. doi:10.15227/orgsyn.038.0075.
  • ^ Walden, P. (1907). "Zur Darstellung aliphatischer Sulfocyanide, Cyanide und Nitrokörper". Berichte der Deutschen Chemischen Gesellschaft. 40 (3): 3214–3217. doi:10.1002/cber.19070400383.
  • ^ Whitmore, F. C.; Whitmore, Marion G. (1923). "Nitromethane". Organic Syntheses. 1: 401. doi:10.15227/orgsyn.003.0083.
  • ^ Olah, George A.; Ramaiah, Pichika; Chang-Soo, Lee; Prakash, Surya (1992). "Convenient Oxidation of Oximes to Nitro Compounds with Sodium Perborate in Glacial Acetic Acid". Synlett. 1992 (4): 337–339. doi:10.1055/s-1992-22006.
  • ^ Ehud, Keinan; Yehuda, Mazur (1977). "Dry ozonation of amines. Conversion of primary amines to nitro compounds". The Journal of Organic Chemistry. 42 (5): 844–847. doi:10.1021/jo00425a017.
  • ^ Chandrasekhar, S.; Shrinidhi, A. (2014). "Useful Extensions of the Henry Reaction: Expeditious Routes to Nitroalkanes and Nitroalkenes in Aqueous Media". Synthetic Communications. 44 (20): 3008–3018. doi:10.1080/00397911.2014.926373. S2CID 98439096.
  • ^ Shrinidhi, A. (2015). "Microwave-assisted chemoselective reduction of conjugated nitroalkenes to nitroalkanes with aqueous tri-n-butyltin hydride". Cogent Chemistry. 1 (1): 1061412. doi:10.1080/23312009.2015.1061412.
  • ^ Wislicenus, Wilhelm; Endres, Anton (1902). "Ueber Nitrirung mittels Aethylnitrat [Nitrification by means of ethyl nitrate]". Berichte der Deutschen Chemischen Gesellschaft. 35 (2): 1755–1762. doi:10.1002/cber.190203502106.
  • ^ Weygand, Conrad (1972). Hilgetag, G.; Martini, A. (eds.). Weygand/Hilgetag Preparative Organic Chemistry (4th ed.). New York: John Wiley & Sons, Inc. p. 1007. ISBN 978-0-471-93749-4.
  • ^ Edmund ter Meer (1876). "Ueber Dinitroverbindungen der Fettreihe". Justus Liebigs Annalen der Chemie. 181 (1): 1–22. doi:10.1002/jlac.18761810102.
  • ^ Hawthorne, M. Frederick (1956). "Aci-Nitroalkanes. I. The Mechanism of the ter Meer Reaction1". Journal of the American Chemical Society. 78 (19): 4980–4984. doi:10.1021/ja01600a048.
  • ^ 3-Hexene, 3,4-dinitro- D. E. Bisgrove, J. F. Brown, Jr., and L. B. Clapp. Organic Syntheses, Coll. Vol. 4, p. 372 (1963); Vol. 37, p. 23 (1957). (Article)
  • ^ Zocher, Georg; Winkler, Robert; Hertweck, Christian; Schulz, Georg E (2007). "Structure and Action of the N-oxygenase AurF from Streptomyces thioluteus". Journal of Molecular Biology. 373 (1): 65–74. doi:10.1016/j.jmb.2007.06.014. PMID 17765264.
  • ^ Maia, José Guilherme S.; Andrade, Eloísa Helena A. (2009). "Database of the Amazon aromatic plants and their essential oils" (PDF). Química Nova. 32 (3). FapUNIFESP (SciELO): 595–622. doi:10.1590/s0100-40422009000300006. ISSN 0100-4042.
  • ^ Kramer, K.U.; Kubitzki, K.; Rohwer, J.G.; Bittrich, V. (1993). Flowering Plants, Dicotyledons: Magnoliid, Hamamelid, and Caryophyllid Families. Families and genera of vascular plants. Springer-Verlag, Berlin. ISBN 978-3-540-55509-4.
  • ^ Nepali K, Lee HY, Liou JP (March 2019). "Nitro-Group-Containing Drugs". J. Med. Chem. 62 (6): 2851–2893. doi:10.1021/acs.jmedchem.8b00147. PMID 30295477. S2CID 52931949.
  • ^ "ETHYL p-DIMETHYLAMINOPHENYLACETATE" (PDF). Organic Syntheses. 47: 69. 1967. doi:10.15227/orgsyn.047.0069.
  • ^ Bordwell, Frederick G; Satish, A. V (1994). "Is Resonance Important in Determining the Acidities of Weak Acids or the Homolytic Bond Dissociation Enthalpies (BDEs) of Their Acidic H-A Bonds?". Journal of the American Chemical Society. 116 (20): 8885. doi:10.1021/ja00099a004.
  • ^ Ranganathan, Darshan; Rao, Bhushan; Ranganathan, Subramania; Mehrotra, Ashok & Iyengar, Radha (1980). "Nitroethylene: a stable, clean, and reactive agent for organic synthesis". The Journal of Organic Chemistry. 45 (7): 1185–1189. doi:10.1021/jo01295a003.
  • ^ Jubert, Carole & Knochel, Paul (1992). "Preparation of polyfunctional nitro olefins and nitroalkanes using the copper-zinc reagents RCu(CN)ZnI". The Journal of Organic Chemistry. 57 (20): 5431–5438. doi:10.1021/jo00046a027.
  • ^ Smith (2020)), March's Organic Chemistry, rxn. 16-3.
  • ^ Bartoli, Giuseppe; Marcantoni, Enrico; Petrini, Marino (1992) [14 Apr 1992]. "Nitrones from addition of benzyl and allyl Grignard reagents to alkyl nitro compounds: chemo-, regio-, and stereoselectivity of the reaction". Journal of Organic Chemistry. 57 (22). American Chemical Society: 5834–5840. doi:10.1021/jo00048a012.
  • ^ Nagpal, Akanksha; Valley, Michael P.; Fitzpatrick, Paul F.; Orville, Allen M. (2006). "Crystal Structures of Nitroalkane Oxidase: Insights into the Reaction Mechanism from a Covalent Complex of the Flavoenzyme Trapped during Turnover". Biochemistry. 45 (4): 1138–50. doi:10.1021/bi051966w. PMC 1855086. PMID 16430210.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Nitro_compound&oldid=1225056321"

    Categories: 
    Nitro compounds
    Functional groups
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    Use dmy dates from December 2022
    Commons category link is on Wikidata
    Articles with GND identifiers
    Articles with NDL identifiers
    Articles with NKC identifiers
     



    This page was last edited on 22 May 2024, at 02:42 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki