Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Synthesis  



1.1  Preparation of aromatic nitro compounds  





1.2  Preparation of aliphatic nitro compounds  



1.2.1  Ter Meer Reaction  









2 Occurrence  



2.1  In nature  





2.2  In pharmaceuticals  







3 Reactions of aliphatic nitro compounds  



3.1  Biochemical reactions  







4 Reactions of aromatic nitro compounds  



4.1  Explosions  







5 See also  





6 References  














Nitro compound: Difference between revisions






Afrikaans
العربية
Azərbaycanca
Čeština
Dansk
Deutsch
Ελληνικά
Español
Euskara
فارسی
Français
Galego

Հայերեն
ि
Hrvatski
Bahasa Indonesia
Italiano

Қазақша
Latviešu
Magyar

Plattdüütsch
Polski
Português
Română
Русский
Simple English
Slovenščina
Српски / srpski
Srpskohrvatski / српскохрватски
Svenska
Türkçe
Українська

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




Print/export  







In other projects  



Wikimedia Commons
Wikiquote
 
















Appearance
   

 





Help
 

From Wikipedia, the free encyclopedia
 


Browse history interactively
 Previous editNext edit 
Content deleted Content added
Line 56: Line 56:

Variations on this method is one of the main techniques for [[arylamine]] production.

Variations on this method is one of the main techniques for [[arylamine]] production.



The [[locant|α-carbon]] of nitroalkanes is somewhat acidic. The p''K''<sub>a</sub> values of [[nitromethane]] and [[2-nitropropane]] are respectively 17.2 and 16.9 in [[dimethyl sulfoxide]] (DMSO) solution, suggesting an aqueous p''K''<sub>a</sub> of around 11.<ref>{{cite journal | doi = 10.1021/ja00099a004| title = Is Resonance Important in Determining the Acidities of Weak Acids or the Homolytic Bond Dissociation Enthalpies (BDEs) of Their Acidic H-A Bonds?| journal = Journal of the American Chemical Society| volume = 116| issue = 20| page = 8885| year = 1994| last1 = Bordwell| first1 = Frederick G| last2 = Satish| first2 = A. V}}</ref> In other words, these [[carbon acid]]s can be deprotonated in aqueous solution.

The [[locant|α-carbon]] of nitroalkanes is somewhat acidic. The p''K''<sub>a</sub> values of [[nitromethane]] and [[2-nitropropane]] are respectively 17.2 and 16.9 in [[dimethyl sulfoxide]] (DMSO) solution, suggesting an aqueous p''K''<sub>a</sub> of around 11.<ref>{{cite journal | doi = 10.1021/ja00099a004| title = Is Resonance Important in Determining the Acidities of Weak Acids or the Homolytic Bond Dissociation Enthalpies (BDEs) of Their Acidic H-A Bonds?| journal = Journal of the American Chemical Society| volume = 116| issue = 20| page = 8885| year = 1994| last1 = Bordwell| first1 = Frederick G| last2 = Satish| first2 = A. V}}</ref> In other words, these [[carbon acid]]s can be deprotonated in aqueous solution. The conjugate base is called a [[nitronate]], and behaves similar to an [[enolate]]. In the [[nitroaldol reaction]], it [[direct addition|adds directly]] to [[aldehyde]]s, and, with [[enone]]s, can serve as a [[Michael reaction|Michael donor]]. Conversely, a [[nitroalkene]] reacts with enols as a Michael acceptor.<ref>{{cite journal|author1=Ranganathan, Darshan |author2=Rao, Bhushan |author3=Ranganathan, Subramania |author4=Mehrotra, Ashok |author5=Iyengar, Radha |name-list-style=amp |title=Nitroethylene: a stable, clean, and reactive agent for organic synthesis|journal=The Journal of Organic Chemistry|year=1980|volume=45|issue=7|pages=1185–1189|doi=10.1021/jo01295a003}}</ref><ref>{{cite journal|author1=Jubert, Carole |author2=Knochel, Paul |name-list-style=amp |title=Preparation of polyfunctional nitro olefins and nitroalkanes using the copper-zinc reagents RCu(CN)ZnI|journal=The Journal of Organic Chemistry|year=1992|volume=57|issue=20|pages=5431–5438|doi=10.1021/jo00046a027}}</ref>


The conjugate base is called a [[nitronate]], and behaves similar to an [[enolate]]. In the [[nitroaldol reaction]], it [[direct addition|adds directly]] to [[aldehyde]]s, and, with [[enone]]s, can serve as a [[Michael reaction|Michael donor]]. Conversely, a [[nitroalkene]] reacts with enols as a Michael acceptor.<ref>{{cite journal|author1=Ranganathan, Darshan |author2=Rao, Bhushan |author3=Ranganathan, Subramania |author4=Mehrotra, Ashok |author5=Iyengar, Radha |name-list-style=amp |title=Nitroethylene: a stable, clean, and reactive agent for organic synthesis|journal=The Journal of Organic Chemistry|year=1980|volume=45|issue=7|pages=1185–1189|doi=10.1021/jo01295a003}}</ref><ref>{{cite journal|author1=Jubert, Carole |author2=Knochel, Paul |name-list-style=amp |title=Preparation of polyfunctional nitro olefins and nitroalkanes using the copper-zinc reagents RCu(CN)ZnI|journal=The Journal of Organic Chemistry|year=1992|volume=57|issue=20|pages=5431–5438|doi=10.1021/jo00046a027}}</ref>



Nitronates are also key intermediates in the [[Nef reaction]]: when exposed to pH extremes, a nitronate hydrolyzes to a [[carbonyl group|carbonyl]] and [[azanone]].<ref>Smith (2020)), ''March's Organic Chemistry''.</ref>

Nitronates are also key intermediates in the [[Nef reaction]]: when exposed to pH extremes, a nitronate hydrolyzes to a [[carbonyl group|carbonyl]] and [[azanone]].<ref>Smith (2020)), ''March's Organic Chemistry''.</ref>


Revision as of 02:10, 11 February 2024

The structure of an organic nitro compound

Inorganic chemistry, nitro compounds are organic compounds that contain one or more nitro functional groups (−NO2). The nitro group is one of the most common explosophores (functional group that makes a compound explosive) used globally. The nitro group is also strongly electron-withdrawing. Because of this property, C−H bonds alpha (adjacent) to the nitro group can be acidic. For similar reasons, the presence of nitro groups in aromatic compounds retards electrophilic aromatic substitution but facilitates nucleophilic aromatic substitution. Nitro groups are rarely found in nature. They are almost invariably produced by nitration reactions starting with nitric acid.[1]

Synthesis

Preparation of aromatic nitro compounds

Structural details of nitrobenzene, distances in picometers.[2]

Aromatic nitro compounds are typically synthesized by nitration. Nitration is achieved using a mixture of nitric acid and sulfuric acid, which produce the nitronium ion (NO+2), which is the electrophile:

 Benzene + Nitronium ion

 

H+

Rightward reaction arrow with minor product(s) to top right

Nitrobenzene

The nitration product produced on the largest scale, by far, is nitrobenzene. Many explosives are produced by nitration including trinitrophenol (picric acid), trinitrotoluene (TNT), and trinitroresorcinol (styphnic acid).[3] Another but more specialized method for making aryl–NO2 group starts from halogenated phenols, is the Zinke nitration.

Preparation of aliphatic nitro compounds

Aliphatic nitro compounds can be synthesized by various methods; notable examples include:

Ter Meer Reaction

Innucleophilic aliphatic substitution, sodium nitrite (NaNO2) replaces an alkyl halide. In the so-called Ter Meer reaction (1876) named after Edmund ter Meer,[14] the reactant is a 1,1-halonitroalkane:

The ter Meer reaction

The reaction mechanism is proposed in which in the first slow step a proton is abstracted from nitroalkane 1 to a carbanion 2 followed by protonation to an aci-nitro 3 and finally nucleophilic displacement of chlorine based on an experimentally observed hydrogen kinetic isotope effect of 3.3.[15] When the same reactant is reacted with potassium hydroxide the reaction product is the 1,2-dinitro dimer.[16]

Occurrence

In nature

Chloramphenicol is a rare example of a naturally occurring nitro compound. At least some naturally occurring nitro groups arose by the oxidation of amino groups.[17] 2-Nitrophenol is an aggregation pheromoneofticks.

Examples of nitro compounds are rare in nature. 3-Nitropropionic acid found in fungi and plants (Indigofera). Nitropentadecene is a defense compound found in termites. Nitrophenylethane is found in Aniba canelilla.[18] Nitrophenylethane is also found in members of the Annonaceae, Lauraceae and Papaveraceae.[19]

In pharmaceuticals

Despite the occasional use in pharmaceuticals, the nitro group is associated with mutagenicity and genotoxicity and therefore is often regarded as a liability in the drug discovery process.[20]

Reactions of aliphatic nitro compounds

Nitro compounds participate in several organic reactions, the most important being their reduction to the corresponding amines:

RNO2 + 3 H2 → RNH2 + 2 H2O

Variations on this method is one of the main techniques for arylamine production.

The α-carbon of nitroalkanes is somewhat acidic. The pKa values of nitromethane and 2-nitropropane are respectively 17.2 and 16.9 in dimethyl sulfoxide (DMSO) solution, suggesting an aqueous pKa of around 11.[21] In other words, these carbon acids can be deprotonated in aqueous solution. The conjugate base is called a nitronate, and behaves similar to an enolate. In the nitroaldol reaction, it adds directlytoaldehydes, and, with enones, can serve as a Michael donor. Conversely, a nitroalkene reacts with enols as a Michael acceptor.[22][23]

Nitronates are also key intermediates in the Nef reaction: when exposed to pH extremes, a nitronate hydrolyzes to a carbonyl and azanone.[24]

Grignard reagents combine with nitro compounds to give a nitrone; but a Grignard reagent with an α hydrogen will then add again to the nitrone to give a hydroxylamine salt.[25]

Biochemical reactions

Many flavin-dependent enzymes are capable of oxidizing aliphatic nitro compounds to less-toxic aldehydes and ketones. Nitroalkane oxidase and 3-nitropropionate oxidase oxidize aliphatic nitro compounds exclusively, whereas other enzymes such as glucose oxidase have other physiological substrates.[26]

Reactions of aromatic nitro compounds

Reduction of aromatic nitro compounds with hydrogen over metal catalysts gives anilines. Virtually all aromatic amines (anilines) are derived from nitroaromatics. A variation is formation of a dimethylaminoarene with palladium on carbon and formaldehyde:[27]

Nitro compound hydrogenation

The Leimgruber–Batcho, Bartoli and Baeyer–Emmerling indole syntheses begin with aromatic nitro compounds. Indigo can be synthesized in a condensation reaction from ortho-nitrobenzaldehyde and acetone in strongly basic conditions in a reaction known as the Baeyer–Drewson indigo synthesis.

Explosions

Explosive decomposition of organo nitro compounds are redox reactions, wherein both the oxidant (nitro group) and the fuel (hydrocarbon substituent) are bound within the same molecule. The explosion process generates heat by forming highly stable products including molecular nitrogen (N2), carbon dioxide, and water. The explosive power of this redox reaction is enhanced because these stable products are gases at mild temperatures. Many contact explosives contain the nitro group.

See also

References

  1. ^ Henry Feuer, ed. (1970). Nitro and Nitroso Groups: Part 2, Volume 2. PATAI'S Chemistry of Functional Groups. Vol. 2. John Wiley & Sons Ltd. doi:10.1002/9780470771174. ISBN 978-0-470-77117-4.Saul Patai, ed. (1982). Nitro and Nitroso Groups: Supplement F: Part 2, Volume 2. PATAI'S Chemistry of Functional Groups. John Wiley & Sons Ltd. doi:10.1002/9780470771679. ISBN 978-0-470-77167-9.Saul Patai, ed. (1982). Amino, Nitroso and Nitro Compounds and Their Derivatives: Supplement F: Part 1, Volume 1. PATAI'S Chemistry of Functional Groups. John Wiley & Sons Ltd. doi:10.1002/9780470771662. ISBN 978-0-470-77166-2.
  • ^ Olga V. Dorofeeva; Yuriy V. Vishnevskiy; Natalja Vogt; Jürgen Vogt; Lyudmila V. Khristenko; Sergey V. Krasnoshchekov; Igor F. Shishkov; István Hargittai; Lev V. Vilkov (2007). "Molecular Structure and Conformation of Nitrobenzene Reinvestigated by Combined Analysis of Gas-Phase Electron Diffraction, Rotational Constants, and Theoretical Calculations". Structural Chemistry. 18 (6): 739–753. doi:10.1007/s11224-007-9186-6. S2CID 98746905.
  • ^ Gerald, Booth. "Nitro Compounds, Aromatic". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a17_411. ISBN 978-3527306732.
  • ^ Markofsky, Sheldon; Grace, W.G. (2000). "Nitro Compounds, Aliphatic". Ullmann's Encyclopedia of Industrial Chemistry. doi:10.1002/14356007.a17_401. ISBN 978-3-527-30673-2.
  • ^ Kornblum, N.; Ungnade, H. E. (1963). "1-Nitroöctane". Organic Syntheses. 4: 724. doi:10.15227/orgsyn.038.0075.
  • ^ Walden, P. (1907). "Zur Darstellung aliphatischer Sulfocyanide, Cyanide und Nitrokörper". Berichte der Deutschen Chemischen Gesellschaft. 40 (3): 3214–3217. doi:10.1002/cber.19070400383.
  • ^ Whitmore, F. C.; Whitmore, Marion G. (1923). "Nitromethane". Organic Syntheses. 1: 401. doi:10.15227/orgsyn.003.0083.
  • ^ Olah, George A.; Ramaiah, Pichika; Chang-Soo, Lee; Prakash, Surya (1992). "Convenient Oxidation of Oximes to Nitro Compounds with Sodium Perborate in Glacial Acetic Acid". Synlett. 1992 (4): 337–339. doi:10.1055/s-1992-22006.
  • ^ Ehud, Keinan; Yehuda, Mazur (1977). "Dry ozonation of amines. Conversion of primary amines to nitro compounds". The Journal of Organic Chemistry. 42 (5): 844–847. doi:10.1021/jo00425a017.
  • ^ Chandrasekhar, S.; Shrinidhi, A. (2014). "Useful Extensions of the Henry Reaction: Expeditious Routes to Nitroalkanes and Nitroalkenes in Aqueous Media". Synthetic Communications. 44 (20): 3008–3018. doi:10.1080/00397911.2014.926373. S2CID 98439096.
  • ^ Shrinidhi, A. (2015). "Microwave-assisted chemoselective reduction of conjugated nitroalkenes to nitroalkanes with aqueous tri-n-butyltin hydride". Cogent Chemistry. 1 (1): 1061412. doi:10.1080/23312009.2015.1061412.
  • ^ Wislicenus, Wilhelm; Endres, Anton (1902). "Ueber Nitrirung mittels Aethylnitrat [Nitrification by means of ethyl nitrate]". Berichte der Deutschen Chemischen Gesellschaft. 35 (2): 1755–1762. doi:10.1002/cber.190203502106.
  • ^ Weygand, Conrad (1972). Hilgetag, G.; Martini, A. (eds.). Weygand/Hilgetag Preparative Organic Chemistry (4th ed.). New York: John Wiley & Sons, Inc. p. 1007. ISBN 978-0-471-93749-4.
  • ^ Edmund ter Meer (1876). "Ueber Dinitroverbindungen der Fettreihe". Justus Liebigs Annalen der Chemie. 181 (1): 1–22. doi:10.1002/jlac.18761810102.
  • ^ Hawthorne, M. Frederick (1956). "Aci-Nitroalkanes. I. The Mechanism of the ter Meer Reaction1". Journal of the American Chemical Society. 78 (19): 4980–4984. doi:10.1021/ja01600a048.
  • ^ 3-Hexene, 3,4-dinitro- D. E. Bisgrove, J. F. Brown, Jr., and L. B. Clapp. Organic Syntheses, Coll. Vol. 4, p. 372 (1963); Vol. 37, p. 23 (1957). (Article)
  • ^ Zocher, Georg; Winkler, Robert; Hertweck, Christian; Schulz, Georg E (2007). "Structure and Action of the N-oxygenase AurF from Streptomyces thioluteus". Journal of Molecular Biology. 373 (1): 65–74. doi:10.1016/j.jmb.2007.06.014. PMID 17765264.
  • ^ Maia, José Guilherme S.; Andrade, Eloísa Helena A. (2009). "Database of the Amazon aromatic plants and their essential oils" (PDF). Química Nova. 32 (3). FapUNIFESP (SciELO): 595–622. doi:10.1590/s0100-40422009000300006. ISSN 0100-4042.
  • ^ Kramer, K.U.; Kubitzki, K.; Rohwer, J.G.; Bittrich, V. (1993). Flowering Plants, Dicotyledons: Magnoliid, Hamamelid, and Caryophyllid Families. Families and genera of vascular plants. Springer-Verlag, Berlin. ISBN 978-3-540-55509-4.
  • ^ Nepali K, Lee HY, Liou JP (March 2019). "Nitro-Group-Containing Drugs". J. Med. Chem. 62 (6): 2851–2893. doi:10.1021/acs.jmedchem.8b00147. PMID 30295477. S2CID 52931949.
  • ^ Bordwell, Frederick G; Satish, A. V (1994). "Is Resonance Important in Determining the Acidities of Weak Acids or the Homolytic Bond Dissociation Enthalpies (BDEs) of Their Acidic H-A Bonds?". Journal of the American Chemical Society. 116 (20): 8885. doi:10.1021/ja00099a004.
  • ^ Ranganathan, Darshan; Rao, Bhushan; Ranganathan, Subramania; Mehrotra, Ashok & Iyengar, Radha (1980). "Nitroethylene: a stable, clean, and reactive agent for organic synthesis". The Journal of Organic Chemistry. 45 (7): 1185–1189. doi:10.1021/jo01295a003.
  • ^ Jubert, Carole & Knochel, Paul (1992). "Preparation of polyfunctional nitro olefins and nitroalkanes using the copper-zinc reagents RCu(CN)ZnI". The Journal of Organic Chemistry. 57 (20): 5431–5438. doi:10.1021/jo00046a027.
  • ^ Smith (2020)), March's Organic Chemistry.
  • ^ Bartoli, Giuseppe; Marcantoni, Enrico; Petrini, Marino (1992) [14 Apr 1992]. "Nitrones from addition of benzyl and allyl Grignard reagents to alkyl nitro compounds: chemo-, regio-, and stereoselectivity of the reaction". Journal of Organic Chemistry. 57 (22). American Chemical Society: 5834–5840. doi:10.1021/jo00048a012.
  • ^ Nagpal, Akanksha; Valley, Michael P.; Fitzpatrick, Paul F.; Orville, Allen M. (2006). "Crystal Structures of Nitroalkane Oxidase: Insights into the Reaction Mechanism from a Covalent Complex of the Flavoenzyme Trapped during Turnover". Biochemistry. 45 (4): 1138–50. doi:10.1021/bi051966w. PMC 1855086. PMID 16430210.
  • ^ "ETHYL p-DIMETHYLAMINOPHENYLACETATE" (PDF). Organic Syntheses. 47: 69. 1967. doi:10.15227/orgsyn.047.0069.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Nitro_compound&oldid=1206039508"

    Categories: 
    Nitro compounds
    Functional groups
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    Use dmy dates from December 2022
    Commons category link is on Wikidata
    Articles with GND identifiers
    Articles with NDL identifiers
    Articles with NKC identifiers
     



    This page was last edited on 11 February 2024, at 02:10 (UTC).

    This version of the page has been revised. Besides normal editing, the reason for revision may have been that this version contains factual inaccuracies, vandalism, or material not compatible with the Creative Commons Attribution-ShareAlike License.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki