Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  



























Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Chemical properties  



1.1  Redox behaviour  





1.2  Structure  





1.3  Chemical reactions  







2 Production  



2.1  Biosynthesis  





2.2  Acetone photolysis  





2.3  Halomethane photolysis  





2.4  Methane oxidation  





2.5  Azomethane pyrolysis  







3 In the interstellar medium  





4 References  














Methyl radical






تۆرکجه
Čeština
فارسی

Српски / srpski
Srpskohrvatski / српскохрватски
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 


















From Wikipedia, the free encyclopedia
 


Methyl radical
Names
IUPAC name

Methyl[1]

Identifiers

CAS Number

3D model (JSmol)

Beilstein Reference

1696831
ChEBI
ChemSpider

Gmelin Reference

57
MeSH Methyl+radical

PubChem CID

UNII

CompTox Dashboard (EPA)

  • InChI=1S/CH3/h1H3 checkY

    Key: WCYWZMWISLQXQU-UHFFFAOYSA-N checkY

  • [CH3]

Properties

Chemical formula

CH3
Molar mass 15.035 g·mol−1

Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Infobox references

Methyl radical is an organic compound with the chemical formula CH
3
(also written as [CH
3
]
). It is a metastable colourless gas, which is mainly produced in situ as a precursor to other hydrocarbons in the petroleum cracking industry. It can act as either a strong oxidant or a strong reductant, and is quite corrosive to metals.

Chemical properties[edit]

Its first ionization potential (yielding the methenium ion, CH+
3
) is 9.837±0.005 eV.[2]

Redox behaviour[edit]

The carbon centre in methyl can bond with electron-donating molecules by reacting:

CH
3
+ RRCH
3

Because of the capture of the nucleophile (R), methyl has oxidising character. Methyl is a strong oxidant with organic chemicals. However, it is equally a strong reductant with chemicals such as water. It does not form aqueous solutions, as it reduces water to produce methanol and elemental hydrogen:

CH
3
+ 2 H
2
O
→ 2 CH
3
OH
+ H
2

Structure[edit]

The molecular geometry of the methyl radical is trigonal planar (bond angles are 120°), although the energy cost of distortion to a pyramidal geometry is small. All other electron-neutral, non-conjugated alkyl radicals are pyramidalized to some extent, though with very small inversion barriers. For instance, the t-butyl radical has a bond angle of 118° with a 0.7 kcal/mol (2.9 kJ/mol) barrier to pyramidal inversion. On the other hand, substitution of hydrogen atoms by more electronegative substituents leads to radicals with a strongly pyramidal geometry (112°), such as the trifluoromethyl radical, CF
3
, with a much more substantial inversion barrier of around 25 kcal/mol (100 kJ/mol).[3]

Chemical reactions[edit]

Methyl undergoes the typical chemical reactions of a radical. Below approximately 1,100 °C (1,400 K), it rapidly dimerises to form ethane. Upon treatment with an alcohol, it converts to methane and either an alkoxy or hydroxyalkyl. Reduction of methyl gives methane. When heated above, at most, 1,400 °C (1,700 K), methyl decomposes to produce methylidyne and elemental hydrogen, or to produce methylene and atomic hydrogen:

CH
3
→ CH + H
2
CH
3
CH
2
+ H

Methyl is very corrosive to metals, forming methylated metal compounds:

M + n CH
3
→ M(CH3)n

Production[edit]

Biosynthesis[edit]

Some radical SAM enzymes generate methyl radicals by reduction of S-adenosylmethionine.[4]

Acetone photolysis[edit]

It can be produced by the ultraviolet photodissociation of acetone vapour at 193 nm:[5]

C
3
H
6
O
→ CO + 2 CH
3

Halomethane photolysis[edit]

It is also produced by the ultraviolet dissociation of halomethanes:

CH
3
X
→ X + CH
3

Methane oxidation[edit]

It can also be produced by the reaction of methane with the hydroxyl radical:

OH + CH4CH
3
+ H2O

This process begins the major removal mechanism of methane from the atmosphere. The reaction occurs in the troposphereorstratosphere. In addition to being the largest known sink for atmospheric methane, this reaction is one of the most important sources of water vapor in the upper atmosphere.

This reaction in the troposphere gives a methane lifetime of 9.6 years. Two more minor sinks are soil sinks (160 year lifetime) and stratospheric loss by reaction with OH, Cl and O1D in the stratosphere (120 year lifetime), giving a net lifetime of 8.4 years.[6]

Azomethane pyrolysis[edit]

Methyl radicals can also be obtained by pyrolysisofazomethane, CH3N=NCH3, in a low-pressure system.

In the interstellar medium[edit]

Methyl was discovered in interstellar medium in 2000 by a team led by Helmut Feuchtgruber who detected it using the Infrared Space Observatory. It was first detected in molecular clouds toward the centre of the Milky Way.[7]

References[edit]

  1. ^ International Union of Pure and Applied Chemistry (2014). Nomenclature of Organic Chemistry: IUPAC Recommendations and Preferred Names 2013. The Royal Society of Chemistry. p. 1051. doi:10.1039/9781849733069. ISBN 978-0-85404-182-4.
  • ^ Golob, L.; Jonathan, N.; Morris, A.; Okuda, M.; Ross, K.J. (1972). "The first ionization potential of the methyl radical as determined by photoelectron spectroscopy". Journal of Electron Spectroscopy and Related Phenomena. 1 (5): 506–508. doi:10.1016/0368-2048(72)80022-7.
  • ^ Anslyn E.V. and Dougherty D.A., Modern Physical Organic Chemistry (University Science Books, 2006), p.57
  • ^ Ribbe, M. W.; Hu, Y.; Hodgson, K. O.; Hedman, B. (2014). "Biosynthesis of Nitrogenase Metalloclusters". Chemical Reviews. 114 (8): 4063–4080. doi:10.1021/cr400463x. PMC 3999185. PMID 24328215.
  • ^ Hall, G. E.; Vanden Bout, D.; Sears, Trevor J. (1991). "Photodissociation of acetone at 193 nm: Rotational- and vibrational-state distributions of methyl fragments by diode laser absorption/gain spectroscopy". The Journal of Chemical Physics. 94 (6). AIP Publishing: 4182. Bibcode:1991JChPh..94.4182H. doi:10.1063/1.460741.
  • ^ "Trace Gases: Current Observations, Trends, and Budgets". Climate Change 2001, IPCC Third Assessment Report. IPCC/United Nations Environment Programme.
  • ^ "ISO detects a new molecule in interstellar space". Science & Technology. European Space Agency. Retrieved 17 June 2013.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Methyl_radical&oldid=1172672419"

    Categories: 
    Astrochemistry
    Free radicals
    Oil refining
    Methane
    Hidden categories: 
    Articles without InChI source
    Articles without KEGG source
    Articles containing unverified chemical infoboxes
    Chembox image size set
    Articles with short description
    Short description is different from Wikidata
     



    This page was last edited on 28 August 2023, at 15:30 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki