Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  



























Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Structure  



1.1  Gene  





1.2  Protein  







2 Function  





3 Mechanism  





4 Regulation  





5 Clinical significance  





6 Interactions  





7 References  





8 External links  














Methylcrotonyl-CoA carboxylase






Bosanski
Deutsch
Español
Italiano

Српски / srpski
Srpskohrvatski / српскохрватски
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 


















From Wikipedia, the free encyclopedia
 


methylcrotonoyl-CoA carboxylase
Identifiers
Aliasesmethylcrotonyl-CoA carboxylase3-methylcrotonoyl-CoA:carbon-dioxide ligase (ADP-forming)beta-methylcrotonyl coenzyme A carboxylaseMCCCmethylcrotonyl coenzyme A carboxylasebeta-methylcrotonyl CoA carboxylasebeta-methylcrotonyl-CoA carboxylase
External IDsGeneCards: [1]; OMA:- orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

n/a

n/a

RefSeq (protein)

n/a

n/a

Location (UCSC)n/an/a
PubMed searchn/an/a
Wikidata
View/Edit Human
Methylcrotonoyl-coenzyme A carboxylase 1 (alpha)
Identifiers
SymbolMCCC1
NCBI gene56922
HGNC6936
OMIM609010
RefSeqNM_020166
UniProtQ96RQ3
Other data
EC number6.4.1.4
LocusChr. 3 q27.1
Search for
StructuresSwiss-model
DomainsInterPro
Methylcrotonoyl-coenzyme A carboxylase 2 (beta)
Identifiers
SymbolMCCC2
NCBI gene64087
HGNC6937
OMIM609014
RefSeqNM_022132
UniProtQ9HCC0
Other data
EC number6.4.1.4
LocusChr. 5 q12-q13
Search for
StructuresSwiss-model
DomainsInterPro

Methylcrotonyl CoA carboxylase (EC 6.4.1.4, MCC) (3-methylcrotonyl CoA carboxylase, methylcrotonoyl-CoA carboxylase) is a biotin-requiring enzyme located in the mitochondria. MCC uses bicarbonate as a carboxyl group source to catalyze the carboxylation of a carbon adjacent to a carbonyl group performing the fourth step in processing leucine, an essential amino acid.[1]

Structure[edit]

Gene[edit]

Human MCC is a biotin dependent mitochondrial enzyme formed by the two subunits MCCCα and MCCCβ, encoded by MCCC1 and MCCC2 respectively.[2] MCCC1 gene has 21 exons and resides on chromosome 3 at q27.[3] MCCC2 gene has 19 exons and resides on chromosome 5 at q12-q13.[4]

Protein[edit]

The enzyme contains α and β subunits. Human MCCCα is composed of 725 amino acids which harbor a covalently bound biotin essential for the ATP-dependent carboxylation; MCCCβ has 563 amino acids that possess carboxyltransferase activity which presumably is essential for binding to 3-methylcrotonyl CoA.[5] The MCC holoenzyme is thought to be a heterododecamer (6α6β) with close structural analogytopropionyl-CoA carboxylase (PCC), another biotin dependent mitochondrial carboxylase.[6]

Function[edit]

During branched-chain amino acid degradation, MCC performs a single step in the breakdown of leucine to eventually yield acetyl CoA and acetoacetate.[7] MCC catalyzes the carboxylation of 3-methylcrotonyl CoAto3-methylglutaconyl CoA, a critical step for leucine and isovaleric acid catabolism in species including mammals, plants and bacteria.[8] 3-Methylglutaconyl CoA is then hydrated to produce 3-hydroxy-3-methylglutaryl CoA. 3-Hydroxy-3-methylglutaryl CoA is cleaved into two molecules, acetoacetate and acetyl CoA.

Point mutations and deletion events in the genes coding for MCC can lead to MCC deficiency, an inborn error of metabolism which usually presents with vomiting, metabolic acidosis, very low plasma glucose concentration, and very low levels of carnitine in plasma.[9]

Excreted
in urine
(10–40%)


MC-CoA
carboxylase
Unknown
enzyme

The image above contains clickable links

Human metabolic pathway for HMB and isovaleryl-CoA relative to L-leucine.[10][11][12] Of the two major pathways, L-leucine is mostly metabolized into isovaleryl-CoA, while only about 5% is metabolized into HMB.[10][11][12]

Mechanism[edit]

Bicarbonate is activated by the addition of ATP, increasing the reactivity of bicarbonate. Once bicarbonate is activated, the biotin portion of MCC performs nucleophilic attack on the activated bicarbonate to form enzyme-bound carboxybiotin. The carboxybiotin portion of MCC can then undergo nucleophilic attack transferring the carboxyl group to the substrate, 3-methylcrotonyl CoA, to form 3-methylglutaconyl CoA.[7]

Regulation[edit]

MCC is covalently modified and inhibited by intermediates of leucine catabolism including 3-methylglutaconyl-CoA, 3-methylglutaryl-CoA, and 3-hydroxy-3-methylglutaryl-CoA that act as reactive acyl species on MCC in a negative feedback loop. SIRT4 activates MCC and upregulates leucine catabolism by removing acyl residues that modified MCC.[13]

Clinical significance[edit]

In humans, MCC deficiency is a rare autosomal recessive genetic disorder whose clinical presentations range from benign to profound metabolic acidosis and death in infancy. Defective mutations in either the α or β subunit have been shown to cause the MCC-deficient syndrome.[5] The typical diagnostic test is the elevated urinary excretion of 3-hydroxyisovaleric acid and 3-methylcrotonylglycine. Patients with MCC deficiency usually have normal growth and development before the first acute episode, such as convulsionsorcoma, that usually occurs between the age of 6-months to 3-years.[14]

Interactions[edit]

MCC has been shown to interact with TRI6 in Fusarium graminearum.[15]

References[edit]

  1. ^ Bruice PY (2001). Organic chemistry: study guide and solutions manual (2nd ed.). Upper Saddle River, N.J.: Prentice Hall. pp. 1010–11. ISBN 978-0-13-017859-6.
  • ^ Morscher RJ, Grünert SC, Bürer C, Burda P, Suormala T, Fowler B, Baumgartner MR (Apr 2012). "A single mutation in MCCC1 or MCCC2 as a potential cause of positive screening for 3-methylcrotonyl-CoA carboxylase deficiency". Molecular Genetics and Metabolism. 105 (4): 602–6. doi:10.1016/j.ymgme.2011.12.018. PMID 22264772.
  • ^ "Entrez Gene:MCCC1 methylcrotonoyl-CoA carboxylase 1".
  • ^ "Entrez Gene:MCCC2 methylcrotonoyl-CoA carboxylase 2".
  • ^ a b Holzinger A, Röschinger W, Lagler F, Mayerhofer PU, Lichtner P, Kattenfeld T, Thuy LP, Nyhan WL, Koch HG, Muntau AC, Roscher AA (Jun 2001). "Cloning of the human MCCA and MCCB genes and mutations therein reveal the molecular cause of 3-methylcrotonyl-CoA: carboxylase deficiency". Human Molecular Genetics. 10 (12): 1299–306. doi:10.1093/hmg/10.12.1299. PMID 11406611.
  • ^ Huang CS, Sadre-Bazzaz K, Shen Y, Deng B, Zhou ZH, Tong L (Aug 2010). "Crystal structure of the alpha(6)beta(6) holoenzyme of propionyl-coenzyme A carboxylase". Nature. 466 (7309): 1001–5. doi:10.1038/nature09302. PMC 2925307. PMID 20725044.
  • ^ a b Berg JM, Tymoczko JL, Stryer L (2002). "Chapter 16.3.2: The Conversion of Pyruvate into Phosphoenolpyruvate Begins with the Formation of Oxaloacetate". Biochemistry (5th ed.). New York, NY: W. H. Freeman. pp. 652–3. ISBN 0-7167-3051-0.
  • ^ Chu CH, Cheng D (Jun 2007). "Expression, purification, characterization of human 3-methylcrotonyl-CoA carboxylase (MCCC)". Protein Expression and Purification. 53 (2): 421–7. doi:10.1016/j.pep.2007.01.012. PMID 17360195.
  • ^ Stipanuk MH (2000). Biochemical and physiological aspects of human nutrition. Philadelphia, Pa.: Saunders. pp. 535–6. ISBN 978-0-7216-4452-3.
  • ^ a b Wilson JM, Fitschen PJ, Campbell B, Wilson GJ, Zanchi N, Taylor L, Wilborn C, Kalman DS, Stout JR, Hoffman JR, Ziegenfuss TN, Lopez HL, Kreider RB, Smith-Ryan AE, Antonio J (February 2013). "International Society of Sports Nutrition Position Stand: beta-hydroxy-beta-methylbutyrate (HMB)". Journal of the International Society of Sports Nutrition. 10 (1): 6. doi:10.1186/1550-2783-10-6. PMC 3568064. PMID 23374455.
  • ^ a b Kohlmeier M (May 2015). "Leucine". Nutrient Metabolism: Structures, Functions, and Genes (2nd ed.). Academic Press. pp. 385–388. ISBN 978-0-12-387784-0. Retrieved 6 June 2016. Energy fuel: Eventually, most Leu is broken down, providing about 6.0kcal/g. About 60% of ingested Leu is oxidized within a few hours ... Ketogenesis: A significant proportion (40% of an ingested dose) is converted into acetyl-CoA and thereby contributes to the synthesis of ketones, steroids, fatty acids, and other compounds
    Figure 8.57: Metabolism of L-leucine
  • ^ Zaganjor E, Vyas S, Haigis MC (June 2017). "SIRT4 Is a Regulator of Insulin Secretion". Cell Chemical Biology. 24 (6): 656–658. doi:10.1016/j.chembiol.2017.06.002. PMID 28644956.
  • ^ Baykal T, Gokcay GH, Ince Z, Dantas MF, Fowler B, Baumgartner MR, Demir F, Can G, Demirkol M (2005). "Consanguineous 3-methylcrotonyl-CoA carboxylase deficiency: early-onset necrotizing encephalopathy with lethal outcome". Journal of Inherited Metabolic Disease. 28 (2): 229–33. doi:10.1007/s10545-005-4559-8. PMID 15877210. S2CID 23446678.
  • ^ Subramaniam R, Narayanan S, Walkowiak S, Wang L, Joshi M, Rocheleau H, Ouellet T, Harris LJ (Nov 2015). "Leucine metabolism regulates TRI6 expression and affects deoxynivalenol production and virulence in Fusarium graminearum". Molecular Microbiology. 98 (4): 760–9. doi:10.1111/mmi.13155. PMID 26248604. S2CID 29839939.
  • External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Methylcrotonyl-CoA_carboxylase&oldid=1227032211"

    Categories: 
    Human genes
    Genes on human chromosome 3
    Genes on human chromosome 5
    EC 6.4.1
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
    Protein pages needing a picture
     



    This page was last edited on 3 June 2024, at 07:42 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki