Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Context  





2 Definition  





3 Special case of a known noise spectrum  





4 Accuracy of approximation  





5 Applications  



5.1  Parameter estimation  





5.2  Signal detection  





5.3  Spectrum estimation  







6 See also  





7 References  














Whittle likelihood







Add links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Instatistics, Whittle likelihood is an approximation to the likelihood function of a stationary Gaussian time series. It is named after the mathematician and statistician Peter Whittle, who introduced it in his PhD thesis in 1951.[1] It is commonly used in time series analysis and signal processing for parameter estimation and signal detection.

Context[edit]

In a stationary Gaussian time series model, the likelihood function is (as usual in Gaussian models) a function of the associated mean and covariance parameters. With a large number () of observations, the () covariance matrix may become very large, making computations very costly in practice. However, due to stationarity, the covariance matrix has a rather simple structure, and by using an approximation, computations may be simplified considerably (from to).[2] The idea effectively boils down to assuming a heteroscedastic zero-mean Gaussian model in Fourier domain; the model formulation is based on the time series' discrete Fourier transform and its power spectral density.[3][4][5]

Definition[edit]

Let be a stationary Gaussian time series with (one-sided) power spectral density , where is even and samples are taken at constant sampling intervals . Let be the (complex-valued) discrete Fourier transform (DFT) of the time series. Then for the Whittle likelihood one effectively assumes independent zero-mean Gaussian distributions for all with variances for the real and imaginary parts given by

where is the th Fourier frequency. This approximate model immediately leads to the (logarithmic) likelihood function

where denotes the absolute value with .[3][4][6]

Special case of a known noise spectrum[edit]

In case the noise spectrum is assumed a-priori known, and noise properties are not to be inferred from the data, the likelihood function may be simplified further by ignoring constant terms, leading to the sum-of-squares expression

This expression also is the basis for the common matched filter.

Accuracy of approximation[edit]

The Whittle likelihood in general is only an approximation, it is only exact if the spectrum is constant, i.e., in the trivial case of white noise. The efficiency of the Whittle approximation always depends on the particular circumstances.[7] [8]

Note that due to linearity of the Fourier transform, Gaussianity in Fourier domain implies Gaussianity in time domain and vice versa. What makes the Whittle likelihood only approximately accurate is related to the sampling theorem—the effect of Fourier-transforming only a finite number of data points, which also manifests itself as spectral leakage in related problems (and which may be ameliorated using the same methods, namely, windowing). In the present case, the implicit periodicity assumption implies correlation between the first and last samples ( and ), which are effectively treated as "neighbouring" samples (like and ).

Applications[edit]

Parameter estimation[edit]

Whittle's likelihood is commonly used to estimate signal parameters for signals that are buried in non-white noise. The noise spectrum then may be assumed known,[9] or it may be inferred along with the signal parameters.[4][6]

Signal detection[edit]

Signal detection is commonly performed with the matched filter, which is based on the Whittle likelihood for the case of a known noise power spectral density.[10][11] The matched filter effectively does a maximum-likelihood fit of the signal to the noisy data and uses the resulting likelihood ratio as the detection statistic.[12]

The matched filter may be generalized to an analogous procedure based on a Student-t distribution by also considering uncertainty (e.g. estimation uncertainty) in the noise spectrum. On the technical side, this entails repeated or iterative matched-filtering.[12]

Spectrum estimation[edit]

The Whittle likelihood is also applicable for estimation of the noise spectrum, either alone or in conjunction with signal parameters.[13][14]

See also[edit]

References[edit]

  1. ^ Whittle, P. (1951). Hypothesis testing in times series analysis. Uppsala: Almqvist & Wiksells Boktryckeri AB.
  • ^ Hurvich, C. (2002). "Whittle's approximation to the likelihood function" (PDF). NYU Stern.
  • ^ a b Calder, M.; Davis, R. A. (1997), "An introduction to Whittle (1953) "The analysis of multiple stationary time series"", in Kotz, S.; Johnson, N. L. (eds.), Breakthroughs in Statistics, Springer Series in Statistics, New York: Springer-Verlag, pp. 141–169, doi:10.1007/978-1-4612-0667-5_7, ISBN 978-0-387-94989-5
    See also: Calder, M.; Davis, R. A. (1996), "An introduction to Whittle (1953) "The analysis of multiple stationary time series"", Technical report 1996/41, Department of Statistics, Colorado State University
  • ^ a b c Hannan, E. J. (1994), "The Whittle likelihood and frequency estimation", in Kelly, F. P. (ed.), Probability, statistics and optimization; a tribute to Peter Whittle, Chichester: Wiley
  • ^ Pawitan, Y. (1998), "Whittle likelihood", in Kotz, S.; Read, C. B.; Banks, D. L. (eds.), Encyclopedia of Statistical Sciences, vol. Update Volume 2, New York: Wiley & Sons, pp. 708–710, doi:10.1002/0471667196.ess0753, ISBN 978-0471667193
  • ^ a b Röver, C.; Meyer, R.; Christensen, N. (2011). "Modelling coloured residual noise in gravitational-wave signal processing". Classical and Quantum Gravity. 28 (1): 025010. arXiv:0804.3853. Bibcode:2011CQGra..28a5010R. doi:10.1088/0264-9381/28/1/015010. S2CID 46673503.
  • ^ Choudhuri, N.; Ghosal, S.; Roy, A. (2004). "Contiguity of the Whittle measure for a Gaussian time series". Biometrika. 91 (4): 211–218. doi:10.1093/biomet/91.1.211.
  • ^ Countreras-Cristán, A.; Gutiérrez-Peña, E.; Walker, S. G. (2006). "A Note on Whittle's Likelihood". Communications in Statistics – Simulation and Computation. 35 (4): 857–875. doi:10.1080/03610910600880203. S2CID 119395974.
  • ^ Finn, L. S. (1992). "Detection, measurement and gravitational radiation". Physical Review D. 46 (12): 5236–5249. arXiv:gr-qc/9209010. Bibcode:1992PhRvD..46.5236F. doi:10.1103/PhysRevD.46.5236. PMID 10014913. S2CID 19004097.
  • ^ Turin, G. L. (1960). "An introduction to matched filters". IRE Transactions on Information Theory. 6 (3): 311–329. doi:10.1109/TIT.1960.1057571. S2CID 5128742.
  • ^ Wainstein, L. A.; Zubakov, V. D. (1962). Extraction of signals from noise. Englewood Cliffs, NJ: Prentice-Hall.
  • ^ a b Röver, C. (2011). "Student-t-based filter for robust signal detection". Physical Review D. 84 (12): 122004. arXiv:1109.0442. Bibcode:2011PhRvD..84l2004R. doi:10.1103/PhysRevD.84.122004.
  • ^ Choudhuri, N.; Ghosal, S.; Roy, A. (2004). "Bayesian estimation of the spectral density of a time series" (PDF). Journal of the American Statistical Association. 99 (468): 1050–1059. CiteSeerX 10.1.1.212.2814. doi:10.1198/016214504000000557. S2CID 17906077.
  • ^ Edwards, M. C.; Meyer, R.; Christensen, N. (2015). "Bayesian semiparametric power spectral density estimation in gravitational wave data analysis". Physical Review D. 92 (6): 064011. arXiv:1506.00185. Bibcode:2015PhRvD..92f4011E. doi:10.1103/PhysRevD.92.064011. S2CID 11508218.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Whittle_likelihood&oldid=1191269338"

    Categories: 
    Time series
    Time series models
    Frequency-domain analysis
    Statistical inference
    Statistical models
    Statistical signal processing
    Signal estimation
    Normal distribution
    Hidden categories: 
    CS1: long volume value
    Articles with short description
    Short description matches Wikidata
     



    This page was last edited on 22 December 2023, at 14:31 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki