Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  



























Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Overview  





2 Modes of convergence of random variables  





3 Asymptotic properties  



3.1  Estimators  



3.1.1  Consistency  





3.1.2  Asymptotic distribution  





3.1.3  Asymptotic confidence regions  









4 Asymptotic theorems  





5 See also  





6 References  





7 Bibliography  














Asymptotic theory (statistics)






Deutsch
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 


















From Wikipedia, the free encyclopedia
 


Instatistics, asymptotic theory, or large sample theory, is a framework for assessing properties of estimators and statistical tests. Within this framework, it is often assumed that the sample size n may grow indefinitely; the properties of estimators and tests are then evaluated under the limit of n → ∞. In practice, a limit evaluation is considered to be approximately valid for large finite sample sizes too.[1]

Overview[edit]

Most statistical problems begin with a dataset of size n. The asymptotic theory proceeds by assuming that it is possible (in principle) to keep collecting additional data, thus that the sample size grows infinitely, i.e. n → ∞. Under the assumption, many results can be obtained that are unavailable for samples of finite size. An example is the weak law of large numbers. The law states that for a sequence of independent and identically distributed (IID) random variables X1, X2, ..., if one value is drawn from each random variable and the average of the first n values is computed as Xn, then the Xn converge in probability to the population mean E[Xi]asn → ∞.[2]

In asymptotic theory, the standard approach is n → ∞. For some statistical models, slightly different approaches of asymptotics may be used. For example, with panel data, it is commonly assumed that one dimension in the data remains fixed, whereas the other dimension grows: T = constant and N → ∞, or vice versa.[2]

Besides the standard approach to asymptotics, other alternative approaches exist:

In many cases, highly accurate results for finite samples can be obtained via numerical methods (i.e. computers); even in such cases, though, asymptotic analysis can be useful. This point was made by Small (2010, §1.4), as follows.

A primary goal of asymptotic analysis is to obtain a deeper qualitative understanding of quantitative tools. The conclusions of an asymptotic analysis often supplement the conclusions which can be obtained by numerical methods.

Modes of convergence of random variables[edit]

Asymptotic properties[edit]

Estimators[edit]

Consistency[edit]

A sequence of estimates is said to be consistent, if it converges in probability to the true value of the parameter being estimated:

That is, roughly speaking with an infinite amount of data the estimator (the formula for generating the estimates) would almost surely give the correct result for the parameter being estimated.[2]

Asymptotic distribution[edit]

If it is possible to find sequences of non-random constants {an}, {bn} (possibly depending on the value of θ0), and a non-degenerate distribution G such that

then the sequence of estimators is said to have the asymptotic distribution G.

Most often, the estimators encountered in practice are asymptotically normal, meaning their asymptotic distribution is the normal distribution, with an = θ0, bn = n, and G = N(0, V):

Asymptotic confidence regions[edit]

Asymptotic theorems[edit]

See also[edit]

References[edit]

  1. ^ Höpfner, R. (2014), Asymptotic Statistics, Walter de Gruyter. 286 pag. ISBN 3110250241, ISBN 978-3110250244
  • ^ a b c A. DasGupta (2008), Asymptotic Theory of Statistics and Probability, Springer. ISBN 0387759700, ISBN 978-0387759708
  • Bibliography[edit]

  • Borovkov, A. A.; Borovkov, K. A. (2010), Asymptotic Analysis of Random Walks, Cambridge University Press
  • Buldygin, V. V.; Solntsev, S. (1997), Asymptotic Behaviour of Linearly Transformed Sums of Random Variables, Springer, ISBN 9789401155687
  • Le Cam, Lucien; Yang, Grace Lo (2000), Asymptotics in Statistics (2nd ed.), Springer
  • Dawson, D.; Kulik, R.; Ould Haye, M.; Szyszkowicz, B.; Zhao, Y., eds. (2015), Asymptotic Laws and Methods in Stochastics, Springer-Verlag
  • Höpfner, R. (2014), Asymptotic Statistics, Walter de Gruyter
  • Lin'kov, Yu. N. (2001), Asymptotic Statistical Methods for Stochastic Processes, American Mathematical Society
  • Oliveira, P. E. (2012), Asymptotics for Associated Random Variables, Springer
  • Petrov, V. V. (1995), Limit Theorems of Probability Theory, Oxford University Press
  • Sen, P. K.; Singer, J. M.; Pedroso de Lima, A. C. (2009), From Finite Sample to Asymptotic Methods in Statistics, Cambridge University Press
  • Shiryaev, A. N.; Spokoiny, V. G. (2000), Statistical Experiments and Decisions: Asymptotic theory, World Scientific
  • Small, C. G. (2010), Expansions and Asymptotics for Statistics, Chapman & Hall
  • van der Vaart, A. W. (1998), Asymptotic Statistics, Cambridge University Press

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Asymptotic_theory_(statistics)&oldid=1073590273"

    Category: 
    Asymptotic theory (statistics)
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
    Articles with GND identifiers
    Articles with NKC identifiers
     



    This page was last edited on 23 February 2022, at 13:40 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki