Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Statement  





2 Discussion  





3 Generalizations and variants  





4 See also  





5 Notes  














Law of the iterated logarithm






Deutsch
Español
فارسی
Français
Oʻzbekcha / ўзбекча
Polski
Português
Русский

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Plot of (red), its standard deviation (blue) and its bound given by LIL (green). Notice the way it randomly switches from the upper bound to the lower bound. Both axes are non-linearly transformed (as explained in figure summary) to make this effect more visible.

Inprobability theory, the law of the iterated logarithm describes the magnitude of the fluctuations of a random walk. The original statement of the law of the iterated logarithm is due to A. Ya. Khinchin (1924).[1] Another statement was given by A. N. Kolmogorov in 1929.[2]

Statement

[edit]

Let {Yn} be independent, identically distributed random variables with means zero and unit variances. Let Sn = Y1 + ... + Yn. Then

where "log" is the natural logarithm, "lim sup" denotes the limit superior, and "a.s." stands for "almost surely".[3][4]

Discussion

[edit]

The law of iterated logarithms operates "in between" the law of large numbers and the central limit theorem. There are two versions of the law of large numbers — the weak and the strong — and they both state that the sums Sn, scaled by n−1, converge to zero, respectively in probability and almost surely:

On the other hand, the central limit theorem states that the sums Sn scaled by the factor n−1/2 converge in distribution to a standard normal distribution. By Kolmogorov's zero–one law, for any fixed M, the probability that the event occurs is 0 or 1. Then

so

An identical argument shows that

This implies that these quantities cannot converge almost surely. In fact, they cannot even converge in probability, which follows from the equality

and the fact that the random variables

are independent and both converge in distribution to

The law of the iterated logarithm provides the scaling factor where the two limits become different:

Thus, although the absolute value of the quantity is less than any predefined ε > 0 with probability approaching one, it will nevertheless almost surely be greater than ε infinitely often; in fact, the quantity will be visiting the neighborhoods of any point in the interval (-1,1) almost surely.

Exhibition of Limit Theorems and their interrelationship

Generalizations and variants

[edit]

The law of the iterated logarithm (LIL) for a sum of independent and identically distributed (i.i.d.) random variables with zero mean and bounded increment dates back to Khinchin and Kolmogorov in the 1920s.

Since then, there has been a tremendous amount of work on the LIL for various kinds of dependent structures and for stochastic processes. The following is a small sample of notable developments.

HartmanWintner (1940) generalized LIL to random walks with increments with zero mean and finite variance. De Acosta (1983) gave a simple proof of the Hartman–Wintner version of the LIL.[5]

Chung (1948) proved another version of the law of the iterated logarithm for the absolute value of a brownian motion.[6]

Strassen (1964) studied the LIL from the point of view of invariance principles.[7]

Stout (1970) generalized the LIL to stationary ergodic martingales.[8]

Wittmann (1985) generalized Hartman–Wintner version of LIL to random walks satisfying milder conditions.[9]

Vovk (1987) derived a version of LIL valid for a single chaotic sequence (Kolmogorov random sequence).[10] This is notable, as it is outside the realm of classical probability theory.

Yongge Wang (1996) showed that the law of the iterated logarithm holds for polynomial time pseudorandom sequences also.[11][12] The Java-based software testing tool tests whether a pseudorandom generator outputs sequences that satisfy the LIL.

Balsubramani (2014) proved a non-asymptotic LIL that holds over finite-time martingale sample paths.[13] This subsumes the martingale LIL as it provides matching finite-sample concentration and anti-concentration bounds, and enables sequential testing[14] and other applications.[15]

See also

[edit]

Notes

[edit]
  1. ^ A. Khinchine. "Über einen Satz der Wahrscheinlichkeitsrechnung", Fundamenta Mathematicae 6 (1924): pp. 9–20 (The author's name is shown here in an alternate transliteration.)
  • ^ A. Kolmogoroff. "Über das Gesetz des iterierten Logarithmus". Mathematische Annalen, 101: 126–135, 1929. (At the Göttinger DigitalisierungsZentrum web site)
  • ^ Leo Breiman. Probability. Original edition published by Addison-Wesley, 1968; reprinted by Society for Industrial and Applied Mathematics, 1992. (See Sections 3.9, 12.9, and 12.10; Theorem 3.52 specifically.)
  • ^ Varadhan, S. R. S. Stochastic Processes. Courant Lecture Notes in Mathematics, 16. Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2007.
  • ^ A. de Acosta: "A New Proof of the Hartman-Wintner Law of the Iterated Logarithm". Ann. Probab., 1983.
  • ^ Chung, Kai-lai (1948). "On the maximum partial sums of sequences of independent random variables". Trans. Am. Math. Soc. 61: 205–233.
  • ^ V. Strassen: "An invariance principle for the law of the iterated logarithm". Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 1964.
  • ^ W. F. Stout: "The Hartman-Wintner Law of the Iterated Logarithm for Martingales". Ann. Math. Statist., 1970.
  • ^ R. Wittmann: "A general law of iterated logarithm". Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 1985.
  • ^ V. Vovk: "The Law of the Iterated Logarithm for Random Kolmogorov, or Chaotic, Sequences". Theory Probab. Appl., 1987.
  • ^ Y. Wang: "The law of the iterated logarithm for p-random sequences". In: Proc. 11th IEEE Conference on Computational Complexity (CCC), pages 180–189. IEEE Computer Society Press, 1996.
  • ^ Y. Wang: Randomness and Complexity. PhD thesis, 1996.
  • ^ A. Balsubramani: "Sharp finite-time iterated-logarithm martingale concentration". arXiv:1405.2639.
  • ^ A. Balsubramani and A. Ramdas: "Sequential nonparametric testing with the law of the iterated logarithm". 32nd Conference on Uncertainty in Artificial Intelligence (UAI).
  • ^ C. Daskalakis and Y. Kawase: "Optimal Stopping Rules for Sequential Hypothesis Testing". In 25th Annual European Symposium on Algorithms (ESA 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Law_of_the_iterated_logarithm&oldid=1230023277"

    Categories: 
    Asymptotic theory (statistics)
    Theorems in statistics
    Stochastic processes
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
     



    This page was last edited on 20 June 2024, at 03:32 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki