Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 References  





2 Further reading  














Latin hypercube sampling






Español
Français
Português
Sunda

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Latin hypercube sampling (LHS) is a statistical method for generating a near-random sample of parameter values from a multidimensional distribution. The sampling method is often used to construct computer experiments or for Monte Carlo integration.

LHS was described by Michael McKay of Los Alamos National Laboratory in 1979.[1] An independently equivalent technique was proposed by Vilnis Eglājs in 1977.[2] It was further elaborated by Ronald L. Iman and coauthors in 1981.[3] Detailed computer codes and manuals were later published.[4]

In the context of statistical sampling, a square grid containing sample positions is a Latin square if (and only if) there is only one sample in each row and each column. A Latin hypercube is the generalisation of this concept to an arbitrary number of dimensions, whereby each sample is the only one in each axis-aligned hyperplane containing it.

When sampling a function of variables, the range of each variable is divided into equally probable intervals. sample points are then placed to satisfy the Latin hypercube requirements; this forces the number of divisions, , to be equal for each variable. This sampling scheme does not require more samples for more dimensions (variables); this independence is one of the main advantages of this sampling scheme. Another advantage is that random samples can be taken one at a time, remembering which samples were taken so far.

In two dimensions the difference between random sampling, Latin hypercube sampling, and orthogonal sampling can be explained as follows:

  1. Inrandom sampling new sample points are generated without taking into account the previously generated sample points. One does not necessarily need to know beforehand how many sample points are needed.
  2. InLatin hypercube sampling one must first decide how many sample points to use and for each sample point remember in which row and column the sample point was taken. Such configuration is similar to having N rooks on a chess board without threatening each other.
  3. Inorthogonal sampling, the sample space is divided into equally probable subspaces. All sample points are then chosen simultaneously making sure that the total set of sample points is a Latin hypercube sample and that each subspace is sampled with the same density.

Thus, orthogonal sampling ensures that the set of random numbers is a very good representative of the real variability, LHS ensures that the set of random numbers is representative of the real variability whereas traditional random sampling (sometimes called brute force) is just a set of random numbers without any guarantees.

References[edit]

  1. ^ McKay, M.D.; Beckman, R.J.; Conover, W.J. (May 1979). "A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output from a Computer Code". Technometrics. 21 (2). American Statistical Association: 239–245. doi:10.2307/1268522. ISSN 0040-1706. JSTOR 1268522. OSTI 5236110.
  • ^ Eglajs, V.; Audze P. (1977). "New approach to the design of multifactor experiments". Problems of Dynamics and Strengths. 35 (in Russian). Riga: Zinatne Publishing House: 104–107.
  • ^ Iman, R.L.; Helton, J.C.; Campbell, J.E. (1981). "An approach to sensitivity analysis of computer models, Part 1. Introduction, input variable selection and preliminary variable assessment". Journal of Quality Technology. 13 (3): 174–183. doi:10.1080/00224065.1981.11978748.
  • ^ Iman, R.L.; Davenport, J.M.; Zeigler, D.K. (1980). Latin hypercube sampling (program user's guide). OSTI 5571631.
  • Further reading[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Latin_hypercube_sampling&oldid=1216779135"

    Categories: 
    Sampling techniques
    Latin squares
    Design of experiments
    1979 introductions
    Hidden categories: 
    CS1 Russian-language sources (ru)
    Articles with short description
    Short description is different from Wikidata
     



    This page was last edited on 1 April 2024, at 23:02 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki