Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Crew  





2 Mission objective  



2.1  Tethered Satellite System  





2.2  Other mission objectives  







3 Alternating use of bunk bed  





4 Operating system  





5 Fictional STS-75 mission  





6 References  





7 External links  














STS-75






العربية
 / Bân-lâm-gú
Български
Čeština
Deutsch
فارسی
Français
Galego
Italiano
עברית
Magyar
Nederlands

Norsk nynorsk
Polski
Português
Русский
Slovenčina
Svenska
Українська
Yorùbá

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


STS-75
Deployment of the Tethered Satellite System
Mission typeMicrogravity research
Technology development
OperatorNASA
COSPAR ID1996-012A Edit this at Wikidata
SATCAT no.23801
Mission duration15 days, 17 hours, 40 minutes, 22 seconds
Distance travelled10,500,000 kilometres (6,500,000 mi)
Orbits completed252
Spacecraft properties
SpacecraftSpace Shuttle Columbia
Payload mass10,592 kilograms (23,351 lb)
Crew
Crew size7
Members
  • Scott J. Horowitz
  • Jeffrey A. Hoffman
  • Maurizio Cheli
  • Claude Nicollier
  • Franklin R. Chang-Diaz
  • Umberto Guidoni
  • Start of mission
    Launch date22 February 1996, 20:18:00 (1996-02-22UTC20:18Z) UTC
    Launch siteKennedy LC-39B
    End of mission
    Landing date9 March 1996, 13:58:22 (1996-03-09UTC13:58:23Z) UTC
    Landing siteKennedy SLF Runway 33
    Orbital parameters
    Reference systemGeocentric
    RegimeLow Earth
    Perigee altitude277 kilometres (172 mi)
    Apogee altitude320 kilometres (200 mi)
    Inclination28.45 degrees
    Period90.5 minutes

    Left to right - Seated: Horowitz, Allen, Chang-Diaz; Standing: Cheli, Guidoni, Hoffman, Nicollier
    ← STS-72 (74)
    STS-76 (76) →
     

    STS-75 was a 1996 NASA Space Shuttle mission, the 19th mission of the Columbia orbiter.

    Crew[edit]

    Position Astronaut
    Commander United States Andrew M. Allen
    Third and last spaceflight
    Pilot United States Scott J. Horowitz
    First spaceflight
    Mission Specialist 1 United States Jeffrey A. Hoffman
    Fifth and last spaceflight
    Mission Specialist 2 Italy Maurizio Cheli, ESA
    Only spaceflight
    Mission Specialist 3 Switzerland Claude Nicollier, ESA
    Third spaceflight
    Mission Specialist 4 Costa Rica/United States Franklin R. Chang-Diaz
    Fifth spaceflight
    Payload Commander
    Payload Specialist Italy Umberto Guidoni, ASI
    First spaceflight

    Allen, Hoffman, Nicollier and Chang-Díaz had previously been members of the STS-46 crew, which had flown the TSS-1 experiment in 1992.

    Mission objective[edit]

    Tethered Satellite System[edit]

    The primary objective of STS-75 was to carry the Tethered Satellite System Reflight (TSS-1R) into orbit and to deploy it spaceward on a conducting tether. The mission also flew the United States Microgravity Payload (USMP-3) designed to investigate materials science and condensed matter physics.

    The TSS-1R mission was a reflight of TSS-1 which was flown onboard Space Shuttle AtlantisonSTS-46 in July/August 1992. The Tether Satellite System circled the Earth at an altitude of 296 kilometers, placing the tether system within the rarefied electrically charged layer of the atmosphere known as the ionosphere.

    STS-75 mission scientists hoped to deploy the tether to a distance of 20.7 kilometers (12.9 mi). Over 19 kilometers (12 mi) of the tether were deployed (over a period of 5 hours) before the tether broke. Many pieces of floating debris were produced by the plasma discharge and rupture of the tether, and some collided with it.[1][2][3] The satellite remained in orbit for a number of weeks and was easily visible from the ground.

    TSS-1R.
    TSS-1R tether composition [NASA].

    The electric conductor of the tether was a copper braid wound around a nylon (Nomex) string. It was encased in teflon-like insulation, with an outer cover of kevlar, inside a nylon (Nomex) sheath. The culprit turned out to be the innermost core, made of a porous material which, during its manufacture, trapped many bubbles of air, at atmospheric pressure.[2]

    Later vacuum-chamber experiments suggested that the unwinding of the reel uncovered pinholes in the insulation. That in itself would not have caused a major problem, because the ionosphere around the tether, under normal circumstance, was too rarefied to divert much of the current. However, the air trapped in the insulation changed that. As air bubbled out of the pinholes, the high voltage of the nearby tether, about 3500 volts, converted it into a relatively dense plasma (similar to the ignition of a fluorescent tube), and therefore made the tether a much better conductor of electricity. This plasma diverted to the metal of the shuttle and from there to the ionospheric return circuit. That current was enough to melt the cable.[2]

    The specific TSS-1R mission objectives were: characterize the current-voltage response of the TSS-orbiter system, characterize the satellite's high-voltage sheath structure and current collection process, demonstrate electric power generation, verify tether control laws and basic tether dynamics, demonstrate the effect of neutral gas on the plasma sheath and current collection, characterize the TSS radio frequency and plasma wave emissions and characterize the TSS dynamic-electrodynamic coupling.[2]

    TSS-1R Science Investigations included: TSS Deployer Core Equipment and Satellite Core Equipment (DCORE/SCORE), Research on Orbital Plasma Electrodynamics (ROPE), Research on Electrodynamic Tether Effects (RETE), Magnetic Field Experiment for TSS Missions (TEMAG), Shuttle Electrodynamic Tether System (SETS), Shuttle Potential and Return Electron Experiment (SPREE), Tether Optical Phenomena Experiment (TOP), Investigation of Electromagnetic Emissions by the Electrodynamic Tether (EMET), Observations at the Earth's Surface of Electromagnetic Emissions by TSS (OESSE), Investigation and Measurement of Dynamic Noise in the TSS (IMDN), Theoretical and Experimental Investigation of TSS Dynamics (TEID) and the Theory and Modeling in Support of Tethered Satellite Applications (TMST).

    Other mission objectives[edit]

    The USMP-3 payload consisted of four major experiments mounted on two Mission Peculiar Experiment Support Structures (MPESS) and three Shuttle Mid-deck experiments. The experiments were: Advanced Automated Directional Solidification Furnace (AADSF), Material pour l'Etude des Phenomenes Interessant la Solidification sur Terre et en Orbite (MEPHISTO), Space Acceleration Measurement System (SAMS), Orbital Acceleration Research Experiment (OARE), Critical Fluid Light Scattering Experiment (ZENO) and Isothermal Dendritic Growth Experiment (IDGE).

    Alternating use of bunk bed[edit]

    Astronauts Jeffrey A. Hoffman and Scott J. Horowitz, both Jewish, had alternating use of the same bunk bed, to which Hoffman attached, upon Horowitz's request, a mezuzah, using Velcro.[4]

    Operating system[edit]

    STS-75 also was the first use of an operating system based on the Linux kernel on orbit. An older Digital Unix program, originally on a DEC AlphaServer, was ported to run Linux on a laptop. The next use of Linux was a year later, on STS-83.[5]

    Fictional STS-75 mission[edit]

    STS-75 was the shuttle mission described in the fictional NASA Document 12-571-3570, although this document was disseminated several years before STS-75 was launched. The document purports to report on experiments to determine effective sexual positions in microgravity. Astronomer and scientific writer Pierre Kohler mistook this document for fact and is responsible for a major increase in its redistribution in the early 21st century. Conspiracy theories first made in the early beginnings of the Shuttle era of sex in space were suddenly made rampant again, causing a minor press debacle among tabloids.[6]

    References[edit]

    1. ^ Chobotov, V.A.; Mains, D.L. (April 1999). "Tether satellite system collision study". Acta Astronautica. 44 (7–12): 543–551. Bibcode:1999AcAau..44..543C. doi:10.1016/s0094-5765(99)00098-3. ISSN 0094-5765. S2CID 109004311.
  • ^ a b c d Stone, Nobie H (2016). "Unique Results and Lessons Learned From the TSS Missions". 5th International Conference on Tethers in Space – via NTRS.
  • ^ United States. National Aeronautics and Space Administration. (1995). TSS-1R mission failure investigation board : final report. [National Aeronautics and Space Administration]. OCLC 43059641.
  • ^ Dave Gordon. "Practicing Judaism in space - Jewish astronauts reflect upon their time in outer space". Community Magazine (Brooklyn).
  • ^ "LINUX TO FLY ON STS-83". SpaceNews. 17 March 1997. Archived from the original on 10 December 2005.
  • ^ Roach, Mary (2011). Packing For Mars. W. W. Norton & Company. pp. 235–236. ISBN 9780393339918. Archived from the original on 25 February 2017. Retrieved 7 May 2021.
  • Public Domain This article incorporates public domain material from websites or documents of the National Aeronautics and Space Administration.

    External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=STS-75&oldid=1142289983"

    Categories: 
    Space Shuttle missions
    Spacecraft launched in 1996
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    Use dmy dates from October 2020
    Wikipedia articles incorporating text from NASA
    Commons category link is on Wikidata
    Webarchive template wayback links
    Use American English from January 2014
    All Wikipedia articles written in American English
     



    This page was last edited on 1 March 2023, at 15:58 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki