Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Composition and physical characteristics  





2 Extent of the interplanetary medium  





3 Interaction with planets  





4 Observable phenomena of the interplanetary medium  





5 History  





6 See also  





7 References  





8 External links  














Interplanetary medium






العربية
Català
Чӑвашла
Čeština
Deutsch
Español
فارسی
Français
Gaeilge

Հայերեն
Hrvatski
Bahasa Indonesia
Italiano
עברית
Lietuvių
Македонски
Nederlands

Norsk bokmål
Norsk nynorsk
Polski
Português
Română
Русский
Slovenčina
Српски / srpski
Srpskohrvatski / српскохрватски
Suomi
Svenska

Türkçe
Українська
Tiếng Vit

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
Wikiversity
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Space plasma)

The heliospheric current sheet results from the influence of the Sun's rotating magnetic field on the plasma in the interplanetary medium.[1]

The interplanetary medium (IPM) or interplanetary space consists of the mass and energy which fills the Solar System, and through which all the larger Solar System bodies, such as planets, dwarf planets, asteroids, and comets, move. The IPM stops at the heliopause, outside of which the interstellar medium begins. Before 1950, interplanetary space was widely considered to either be an empty vacuum, or consisting of "aether".

Composition and physical characteristics

[edit]

The interplanetary medium includes interplanetary dust, cosmic rays, and hot plasma from the solar wind.[2][failed verification] The density of the interplanetary medium is very low, decreasing in inverse proportion to the square of the distance from the Sun. It is variable, and may be affected by magnetic fields and events such as coronal mass ejections. Typical particle densities in the interplanetary medium are about 5-40 particles/cm3, but exhibit substantial variation.[3]: Figure 1  In the vicinity of the Earth, it contains about 5 particles/cm3,[4]: 326  but values as high as 100 particles/cm3 have been observed.[3]: Figure 2 

The temperature of the interplanetary medium varies through the solar system. Joseph Fourier estimated that interplanetary medium must have temperatures comparable to those observed at Earth's poles, but on faulty grounds: lacking modern estimates of atmospheric heat transport, he saw no other means to explain the relative consistency of Earth's climate.[5] A very hot interplanetary medium remained a minor position among geophysicists as late as 1959, when Chapman proposed a temperature on the order of 10000 K,[6] but observation in Low Earth orbit of the exosphere soon contradicted his position.[citation needed] In fact, both Fourier and Chapman's final predictions were correct: because the interplanetary medium is so rarefied, it does not exhibit thermodynamic equilibrium. Instead, different components have different temperatures.[3]: 4 [4][7] The solar wind exhibits temperatures consistent with Chapman's estimate in cislunar space,[4]: 326, 329 [7][8] and dust particles near Earth's orbit exhibit temperatures 257–298 K (3–77 °F),[9]: 157  averaging about 283 K (50 °F).[10] In general, the solar wind temperature decreases proportional to the inverse-square of the distance to the Sun;[6] the temperature of the dust decreases proportional to the inverse cube root of the distance.[9]: 157  For dust particles within the asteroid belt, typical temperatures range from 200 K (−100 °F) at 2.2 AU down to 165 K (−163 °F) at 3.2 AU.[11]

Since the interplanetary medium is a plasma, or gas of ions, the interplanetary medium has the characteristics of a plasma, rather than a simple gas. For example, it carries the Sun's magnetic field with it, is highly electrically conductive (resulting in the heliospheric current sheet), forms plasma double layers where it comes into contact with a planetary magnetosphere or at the heliopause, and exhibits filamentation (such as in aurorae).

The plasma in the interplanetary medium is also responsible for the strength of the Sun's magnetic field at the orbit of the Earth being over 100 times greater than originally anticipated. If space were a vacuum, then the Sun's 10−4 tesla magnetic dipole field would reduce with the cube of the distance to about 10−11 tesla. But satellite observations show that it is about 100 times greater at around 10−9 tesla. Magnetohydrodynamic (MHD) theory predicts that the motion of a conducting fluid (e.g., the interplanetary medium) in a magnetic field induces electric currents which in turn generate magnetic fields, and in this respect it behaves like an MHD dynamo.

Extent of the interplanetary medium

[edit]

The outer edge of the heliosphere is the boundary between the flow of the solar wind and the interstellar medium. This boundary is known as the heliopause and is believed to be a fairly sharp transition of the order of 110 to 160 astronomical units from the Sun. The interplanetary medium thus fills the roughly spherical volume contained within the heliopause.

Interaction with planets

[edit]

How the interplanetary medium interacts with planets depends on whether they have magnetic fields or not. Bodies such as the Moon have no magnetic field and the solar wind can impact directly on their surface. Over billions of years, the lunar regolith has acted as a collector for solar wind particles, and so studies of rocks from the lunar surface can be valuable in studies of the solar wind.

High-energy particles from the solar wind impacting on the lunar surface also cause it to emit faintly at X-ray wavelengths.

Planets with their own magnetic field, such as the Earth and Jupiter, are surrounded by a magnetosphere within which their magnetic field is dominant over the Sun's. This disrupts the flow of the solar wind, which is channelled around the magnetosphere. Material from the solar wind can "leak" into the magnetosphere, causing aurorae and also populating the Van Allen radiation belts with ionised material.

Observable phenomena of the interplanetary medium

[edit]
The interplanetary dust cloud illuminated and visible as zodiacal light, with its parts the false dawn,[12] gegenschein and the rest of its band, which is visually crossed by the Milky Way, in this composite image of the night sky above the northern and southern hemisphere

The interplanetary medium is responsible for several optical phenomena visible from Earth. Zodiacal light is a broad band of faint light sometimes seen after sunset and before sunrise, stretched along the ecliptic and appearing brightest near the horizon. This glow is caused by sunlight scatteredbydust particles in the interplanetary medium between Earth and the Sun.

A similar phenomenon centered at the antisolar point, gegenschein is visible in a naturally dark, moonless night sky. Much fainter than zodiacal light, this effect is caused by sunlight backscatteredbydust particles beyond Earth's orbit.

History

[edit]

The term "interplanetary" appears to have been first used in print in 1691 by the scientist Robert Boyle:『The air is different from the æther (or vacuum) in the... interplanetary spaces』Boyle Hist. Air. In 1898, American astronomer Charles Augustus Young wrote: "Inter-planetary space is a vacuum, far more perfect than anything we can produce by artificial means..." (The Elements of Astronomy, Charles Augustus Young, 1898).

The notion that space is considered to be a vacuum filled with an "aether", or just a cold, dark vacuum continued up until the 1950s. Tufts University Professor of astronomy, Kenneth R. Lang, writing in 2000 noted, "Half a century ago, most people visualized our planet as a solitary sphere traveling in a cold, dark vacuum of space around the Sun".[13] In 2002, Akasofu stated "The view that interplanetary space is a vacuum into which the Sun intermittently emitted corpuscular streams was changed radically by Ludwig Biermann (1951, 1953) who proposed on the basis of comet tails, that the Sun continuously blows its atmosphere out in all directions at supersonic speed" (Syun-Ichi Akasofu, Exploring the Secrets of the Aurora, 2002)

See also

[edit]
  • Interplanetary magnetic field
  • Interstellar space
  • Interstellar medium
  • Interstellar dust
  • Intergalactic space
  • Intergalactic medium
  • Intergalactic dust
  • Space physics
  • References

    [edit]
    1. ^ "Heliospheric Current Sheet". 1 September 2006. Archived from the original on 1 September 2006.
  • ^ NASA (12 March 2019). "What scientists found after sifting through dust in the solar system". EurekAlert!. Retrieved 12 March 2019.
  • ^ a b c Burlaga, Leonard F. (September 1967). Micro-scale structures in the interplanetary medium (PDF) (Technical report). NASA Goddard Space Flight Center. NASA-TM-X-55995. Retrieved 17 August 2023.
  • ^ a b c Eviatar, Aharon; Schulz, Michael (1970) [7 July 1969]. "Ion-temperature anisotropies and the structure of the solar wind". Planetary and Space Science. 18 (3). Northern Ireland: Pergamon Press: 321–332. Bibcode:1970P&SS...18..321E. doi:10.1016/0032-0633(70)90171-6.
  • ^ Fourier, Jean-Baptiste Joseph (1 September 2004) [1827]. "Mémoire sur les Températures du Globe Terrestre et des Espaces Planétaires" [On the Temperatures of the Terrestrial Sphere and Interplanetary Space] (PDF). Mémoires D l'Académie Royale des Sciences de l'Institute de France. VII. Translated by Pierrehumbert, R. T.: 570–604.
  • ^ a b Chapman, S. (1959). "Interplanetary Space and the Earth's Outermost Atmosphere". Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences. 253 (1275): 462–481. Bibcode:1959RSPSA.253..462C. doi:10.1098/rspa.1959.0208. ISSN 0080-4630. JSTOR 100693. S2CID 95492893.
  • ^ a b Sittler, Edward C.; Guhathakurta, Madhulika (1 October 1999) [20 March 1998]. "Semi­empirical two-dimensional magneto­hydro­dynamic model of the solar corona and interplanetary medium". The Astrophysical Journal. 523. USA: American Astronomical Society: 812–826. doi:10.1086/307742. Corrected in doi:10.1086/324303.
  • ^ Burlaga, L. F.; Ogilvie, K. W. (October 1972). Solar wind temperature and speed (PDF) (Technical report). Springfield, VA: US Department of Commerce National Technical Information Service. NASA-TM-X-66091. Retrieved 17 August 2023.
  • ^ a b Dumont, R.; Levasseur-Regourd, A.-C. (Feb 1998) [16 December 1986]. "Properties of interplanetary dust from infrared and optical observations I: Temperature, global volume intensity, albedo and their heliocentric gradients". Astronomy and Astrophysics. 191 (1): 154–160. Bibcode:1988A&A...191..154D. ISSN 0004-6361 – via NASA Astrophysics Data System.
  • ^ Libal, Angela (1 June 2023). "The Temperatures of Outer Space Around the Earth". Sciencing. Santa Monica, CA: Leaf Group Media. Retrieved 2023-08-18.
  • ^ Low, F. J.; et al. (1984). "Infrared cirrus – New components of the extended infrared emission". Astrophysical Journal Letters. 278: L19–L22. Bibcode:1984ApJ...278L..19L. doi:10.1086/184213.
  • ^ "False Dawn". www.eso.org. Retrieved 14 February 2017.
  • ^ Kenneth R. Lang (2000). The Sun from Space. Springer Science & Business Media. p. 17. ISBN 978-3-540-66944-9.
  • [edit]
    Retrieved from "https://en.wikipedia.org/w/index.php?title=Interplanetary_medium&oldid=1219529219"

    Categories: 
    Outer space
    Planetary systems
    Solar System
    Space plasmas
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
    Articles needing additional references from July 2007
    All articles needing additional references
    All articles with failed verification
    Articles with failed verification from June 2019
    All articles with unsourced statements
    Articles with unsourced statements from August 2023
    Articles with J9U identifiers
    Articles with NKC identifiers
     



    This page was last edited on 18 April 2024, at 08:55 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki