Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Mathematical definition  





2 Connection to percolation  





3 The law of large numbers on the integers  





4 Die out at criticality  





5 Durrett's conjecture and the central limit theorem  





6 References  





7 Further reading  














Contact process (mathematics)






Português
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


The contact process (on a 1-D lattice): Active sites are indicated by grey circles and inactive sites by dotted circles. Active sites can activate inactive sites to either side of them at a rate r/2 or become inactive at rate 1.

The contact process is a stochastic process used to model population growth on the set of sites of a graph in which occupied sites become vacant at a constant rate, while vacant sites become occupied at a rate proportional to the number of occupied neighboring sites. Therefore, if we denote by the proportionality constant, each site remains occupied for a random time period which is exponentially distributed parameter 1 and places descendants at every vacant neighboring site at times of events of a Poisson process parameter during this period. All processes are independent of one another and of the random period of time sites remains occupied. The contact process can also be interpreted as a model for the spread of an infection by thinking of particles as a bacterium spreading over individuals that are positioned at the sites of , occupied sites correspond to infected individuals, whereas vacant correspond to healthy ones.

The main quantity of interest is the number of particles in the process, say , in the first interpretation, which corresponds to the number of infected sites in the second one. Therefore, the process survives whenever the number of particles is positive for all times, which corresponds to the case that there are always infected individuals in the second one. For any infinite graph there exists a positive and finite critical value so that if then survival of the process starting from a finite number of particles occurs with positive probability, while if their extinction is almost certain. Note that by reductio ad absurdum and the infinite monkey theorem, survival of the process is equivalent to , as , whereas extinction is equivalent to , as , and therefore, it is natural to ask about the rate at which when the process survives.

Mathematical definition

[edit]

If the state of the process at time is, then a site in is occupied, say by a particle, if and vacant if . The contact process is a continuous-time Markov process with state space , where is a finite or countable graph, usually , and a special case of an interacting particle system. More specifically, the dynamics of the basic contact process is defined by the following transition rates: at site ,

where the sum is over all the neighbors ofin. This means that each site waits an exponential time with the corresponding rate, and then flips (so 0 becomes 1 and vice versa).

Connection to percolation

[edit]

The contact process is a stochastic process that is closely connected to percolation theory. Ted Harris (1974) noted that the contact process on when infections and recoveries can occur only in discrete times corresponds to one-step-at-a-time bond percolation on the graph obtained by orienting each edge of in the direction of increasing coordinate-value.

The law of large numbers on the integers

[edit]

Alaw of large numbers for the number of particles in the process on the integers informally means that for all large , is approximately equal to for some positive constant . Harris (1974) proved that, if the process survives, then the rate of growth of is at most and at least linear in time. A weak law of large numbers (that the process converges in probability) was shown by Durrett (1980). A few years later, Durrett and Griffeath (1983) improved this to a strong law of large numbers, giving almost sure convergence of the process.

Die out at criticality

[edit]

Contact processes on all integer lattices die out almost surely at the critical value.[1]

Durrett's conjecture and the central limit theorem

[edit]

Durrett conjectured in survey papers and lecture notes during the 1980s and early 1990s regarding the central limit theorem for the Harris contact process, viz. that, if the process survives, then for all large , equals and the error equals multiplied by a (random) error distributed according to a standard Gaussian distribution.[2][3][4]

Durrett's conjecture turned out to be correct for a different value of asproved in 2018.[5]

References

[edit]
  1. ^ Bezuidenhout, Carol; Grimmett, Geoffrey (1990). "The critical contact process dies out". Annals of Probability. 18 (4): 1462–1482. doi:10.1214/aop/1176990627. JSTOR 2244329. MR 1071804.
  • ^ Durrett, Richard (1984). "Oriented Percolation in Two Dimensions Number". The Annals of Probability. 12 (4): 999–1040. doi:10.1214/aop/1176993140.
  • ^ Durrett, Richard. "Lecture Notes on Particle Systems and Percolation". Wadsworth.
  • ^ .Durrett, Richard. "The contact process, 1974–1989". Cornell University, Mathematical Sciences Institute.
  • ^ Tzioufas, Achillefs (2018). "The Central Limit Theorem for Supercritical Oriented Percolation in Two Dimensions". Journal of Statistical Physics. 171 (5): 802–821. arXiv:1411.4543. Bibcode:2018JSP...171..802T. doi:10.1007/s10955-018-2040-y. S2CID 119174423.
  • Further reading

    [edit]
    Retrieved from "https://en.wikipedia.org/w/index.php?title=Contact_process_(mathematics)&oldid=1226992367"

    Categories: 
    Stochastic processes
    Lattice models
    Hidden category: 
    Articles containing Latin-language text
     



    This page was last edited on 3 June 2024, at 00:41 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki