Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Formal definition  





2 Tanaka's formula  





3 RayKnight theorems  



3.1  First RayKnight theorem  





3.2  Second RayKnight theorem  





3.3  Generalized RayKnight theorems  







4 See also  





5 Notes  





6 References  














Local time (mathematics)






العربية
Ελληνικά
Español
Magyar
Português
Українська
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


A sample path of an Itō process together with its surface of local times.

In the mathematical theory of stochastic processes, local time is a stochastic process associated with semimartingale processes such as Brownian motion, that characterizes the amount of time a particle has spent at a given level. Local time appears in various stochastic integration formulas, such as Tanaka's formula, if the integrand is not sufficiently smooth. It is also studied in statistical mechanics in the context of random fields.

Formal definition[edit]

For a continuous real-valued semimartingale , the local time of at the point is the stochastic process which is informally defined by

where is the Dirac delta function and is the quadratic variation. It is a notion invented by Paul Lévy. The basic idea is that is an (appropriately rescaled and time-parametrized) measure of how much time has spent at up to time . More rigorously, it may be written as the almost sure limit

which may be shown to always exist. Note that in the special case of Brownian motion (or more generally a real-valued diffusion of the form where is a Brownian motion), the term simply reduces to , which explains why it is called the local time of at. For a discrete state-space process , the local time can be expressed more simply as[1]

Tanaka's formula[edit]

Tanaka's formula also provides a definition of local time for an arbitrary continuous semimartingale on[2]

A more general form was proven independently by Meyer[3] and Wang;[4] the formula extends Itô's lemma for twice differentiable functions to a more general class of functions. If is absolutely continuous with derivative which is of bounded variation, then

where is the left derivative.

If is a Brownian motion, then for any the field of local times has a modification which is a.s. Hölder continuous in with exponent , uniformly for bounded and .[5] In general, has a modification that is a.s. continuous in and càdlàgin.

Tanaka's formula provides the explicit Doob–Meyer decomposition for the one-dimensional reflecting Brownian motion, .

Ray–Knight theorems[edit]

The field of local times associated to a stochastic process on a space is a well studied topic in the area of random fields. Ray–Knight type theorems relate the field Lt to an associated Gaussian process.

In general Ray–Knight type theorems of the first kind consider the field Lt at a hitting time of the underlying process, whilst theorems of the second kind are in terms of a stopping time at which the field of local times first exceeds a given value.

First Ray–Knight theorem[edit]

Let (Bt)t ≥ 0 be a one-dimensional Brownian motion started from B0 = a > 0, and (Wt)t≥0 be a standard two-dimensional Brownian motion started from W0 = 0 ∈ R2. Define the stopping time at which B first hits the origin, . Ray[6] and Knight[7] (independently) showed that

(1)

where (Lt)t ≥ 0 is the field of local times of (Bt)t ≥ 0, and equality is in distribution on C[0, a]. The process |Wx|2 is known as the squared Bessel process.

Second Ray–Knight theorem[edit]

Let (Bt)t ≥ 0 be a standard one-dimensional Brownian motion B0 = 0 ∈ R, and let (Lt)t ≥ 0 be the associated field of local times. Let Ta be the first time at which the local time at zero exceeds a > 0

Let (Wt)t ≥ 0 be an independent one-dimensional Brownian motion started from W0 = 0, then[8]

(2)

Equivalently, the process (which is a process in the spatial variable ) is equal in distribution to the square of a 0-dimensional Bessel process started at , and as such is Markovian.

Generalized Ray–Knight theorems[edit]

Results of Ray–Knight type for more general stochastic processes have been intensively studied, and analogue statements of both (1) and (2) are known for strongly symmetric Markov processes.

See also[edit]

Notes[edit]

  1. ^ Karatzas, Ioannis; Shreve, Steven (1991). Brownian Motion and Stochastic Calculus. Springer.
  • ^ Kallenberg (1997). Foundations of Modern Probability. New York: Springer. pp. 428–449. ISBN 0387949577.
  • ^ Meyer, Paul-Andre (2002) [1976]. "Un cours sur les intégrales stochastiques". Séminaire de probabilités 1967–1980. Lect. Notes in Math. Vol. 1771. pp. 174–329. doi:10.1007/978-3-540-45530-1_11. ISBN 978-3-540-42813-8.
  • ^ Wang (1977). "Generalized Itô's formula and additive functionals of Brownian motion". Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete. 41 (2): 153–159. doi:10.1007/bf00538419. S2CID 123101077.
  • ^ Kallenberg (1997). Foundations of Modern Probability. New York: Springer. pp. 370. ISBN 0387949577.
  • ^ Ray, D. (1963). "Sojourn times of a diffusion process". Illinois Journal of Mathematics. 7 (4): 615–630. doi:10.1215/ijm/1255645099. MR 0156383. Zbl 0118.13403.
  • ^ Knight, F. B. (1963). "Random walks and a sojourn density process of Brownian motion". Transactions of the American Mathematical Society. 109 (1): 56–86. doi:10.2307/1993647. JSTOR 1993647.
  • ^ Marcus; Rosen (2006). Markov Processes, Gaussian Processes and Local Times. New York: Cambridge University Press. pp. 53–56. ISBN 0521863007.
  • References[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Local_time_(mathematics)&oldid=1170037908"

    Categories: 
    Stochastic processes
    Statistical mechanics
     



    This page was last edited on 12 August 2023, at 21:13 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki