Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Definition  





2 Existence of a solution  





3 Propagation of chaos  





4 Applications  





5 References  














McKeanVlasov process







Português
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Inprobability theory, a McKean–Vlasov process is a stochastic process described by a stochastic differential equation where the coefficients of the diffusion depend on the distribution of the solution itself.[1][2] The equations are a model for Vlasov equation and were first studied by Henry McKean in 1966.[3] It is an example of propagation of chaos, in that it can be obtained as a limit of a mean-field system of interacting particles: as the number of particles tends to infinity, the interactions between any single particle and the rest of the pool will only depend on the particle itself.[4]

Definition[edit]

Consider a measurable function where is the space of probability distributionson equipped with the Wasserstein metric and is the space of square matrices of dimension . Consider a measurable function . Define .

A stochastic process is a McKean–Vlasov process if it solves the following system:[3][5]

where describes the lawof and denotes a -dimensional Wiener process. This process is non-linear, in the sense that the associated Fokker-Planck equation for is a non-linear partial differential equation.[5][6]

Existence of a solution[edit]

The following Theorem can be found in.[4]

Existence of a solution — Suppose and are globally Lipschitz, that is, there exists a constant such that:

where is the Wasserstein metric.

Suppose has finite variance.

Then for any there is a unique strong solution to the McKean-Vlasov system of equations on . Furthermore, its law is the unique solution to the non-linear Fokker–Planck equation:

Propagation of chaos[edit]

The McKean-Vlasov process is an example of propagation of chaos.[4] What this means is that many McKean-Vlasov process can be obtained as the limit of discrete systems of stochastic differential equations .

Formally, define to be the -dimensional solutions to:

where the are i.i.d Brownian motion, and is the empirical measure associated with defined by where is the Dirac measure.

Propagation of chaos is the property that, as the number of particles , the interaction between any two particles vanishes, and the random empirical measure is replaced by the deterministic distribution .

Under some regularity conditions,[4] the mean-field process just defined will converge to the corresponding McKean-Vlasov process.

Applications[edit]

References[edit]

  1. ^ Des Combes, Rémi Tachet (2011). Non-parametric model calibration in finance: Calibration non paramétrique de modèles en finance (PDF) (Doctoral dissertation). Archived from the original (PDF) on 2012-05-11.
  • ^ Funaki, T. (1984). "A certain class of diffusion processes associated with nonlinear parabolic equations". Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete. 67 (3): 331–348. doi:10.1007/BF00535008. S2CID 121117634.
  • ^ a b McKean, H. P. (1966). "A Class of Markov Processes Associated with Nonlinear Parabolic Equations". Proc. Natl. Acad. Sci. USA. 56 (6): 1907–1911. Bibcode:1966PNAS...56.1907M. doi:10.1073/pnas.56.6.1907. PMC 220210. PMID 16591437.
  • ^ a b c d Chaintron, Louis-Pierre; Diez, Antoine (2022). "Propagation of chaos: A review of models, methods and applications. I. Models and methods". Kinetic and Related Models. 15 (6): 895. arXiv:2203.00446. doi:10.3934/krm.2022017. ISSN 1937-5093.
  • ^ a b c Carmona, Rene; Delarue, Francois; Lachapelle, Aime. "Control of McKean-Vlasov Dynamics versus Mean Field Games" (PDF). Princeton University.
  • ^ a b Chan, Terence (January 1994). "Dynamics of the McKean-Vlasov Equation". The Annals of Probability. 22 (1): 431–441. doi:10.1214/aop/1176988866. ISSN 0091-1798.

  • t
  • e

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=McKean–Vlasov_process&oldid=1219647028"

    Categories: 
    Stochastic differential equations
    Probability stubs
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
    All stub articles
     



    This page was last edited on 19 April 2024, at 00:46 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki