ウラン濃縮

出典: フリー百科事典『ウィキペディア(Wikipedia)』

235[1]238235

[]


238238U99.3%235235U0.7%

2382353

235235235 (0.7%) 20%20%235235

23%5%


[]


3,800 (F) UF6571919FUF5

[]


235238235238

[]


235238Å235235


  1.003

235

235235

3%

[]

235238

2352382382354301101

1992

[]


2352382356.18eV23523823532350.5μ6.18eV2382353322

19761987USECSilex Systems

2,800K

[]


2352382351/100016μ330K235


エアロダイナミック法[編集]

LIGAプロセスで製造された同位体分離用ノズル
ノズルから多数の気体が流れ、遠心分離される。

LIGAKfK E. W. BeckerW. Ehrfeld [2]LIGA[3][4][5]6Uranium Enrichment Corporation of South Africa (UCOR)en:Helikon vortex separation processNUCLEI使

[]


/[6][7][8][9][10][11][12]

[]


Plasma separation process (PSP)235URCIRCI19861990RCI使

[]

-238-235()

238235使使

生成物[編集]

濃縮ウラン[編集]

ウラン235の濃度が天然ウラン (0.7%) のそれを超えるものをいう。濃度によって用途が異なるが、濃縮度3%から5%の低濃縮ウランは原子炉の核燃料として、濃縮度90%を超える高濃縮ウランは兵器用の核燃料として使用される。

劣化ウラン[編集]

ウラン235の濃度が天然ウラン (0.71%) のそれを下回るものをいう。減損ウランとも。0.2%程度が一般的。ウラン濃縮の工程を経ると、必然的にウラン238の比率の高いウランが生成される。核分裂性のウラン235の濃度を高めることは、ウラン燃料として優れたように変化させたことになり、残りの235濃度を減じた部分は劣るように変化させるので劣化ウランと呼ばれる。注意すべきはウラン238自体も放射性元素であり核分裂反応を起こすことである。しかし、核分裂反応の閾値が高く、分裂時に放出される中性子のエネルギーがこの閾値に及ばないために連鎖反応が生じにくいことから、非核分裂性であるとされている。

ウラン238が高速中性子を吸収した結果生成されるプルトニウム239は、核燃料として利用される。

ウラン濃縮の副生成物として発生する劣化ウランは高速増殖炉のブランケット燃料やMOX燃料の材料として用いられるほか、比重の高さと発火性から、兵器の弾体(劣化ウラン弾)としても使用されている。ウランには、人体に対する放射能毒性および重金属毒性があり、その粉塵を吸引することによる健康被害が懸念されている。

関連項目[編集]

脚注[編集]

  1. ^ ウラン濃縮とは”. 日本原燃. 2021年4月29日閲覧。
  2. ^ LIGA プロセス―マイクロデバイスへの応用と今後の展望―
  3. ^ Becker, E. W.; Ehrfeld, W.; Münchmeyer, D.; Betz, H.; Heuberger, A.; Pongratz, S.; Glashauser, W.; Michel, H. J. et al. (1982). “Production of Separation-Nozzle Systems for Uranium Enrichment by a Combination of X-Ray Lithography and Galvanoplastics”. Naturwissenschaften 69 (11): 520–523. doi:10.1007/BF00463495. 
  4. ^ E. W. Becker; W. Ehrfeld; P. Hagmann; A. Maner; D. Munchmeyer (1986年5月). “Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming, and plastic moulding (LIGA process)”. Microelectronic Engineering 4 (1): 35-56. doi:10.1016/0167-9317(86)90004-3. 
  5. ^ P. Hagmann; W. Ehrfeld (1989年). “Fabrication of Microstructures of Extreme Structural Heights by Reaction Injection Molding”. International Polymer Processing (Hanser Publishers) 4 (3): 188-195. doi:10.3139/217.890188. 
  6. ^ “日本が開発したウラン濃縮技術『化学法』”. 日経サイエンス: 18-28. (1994年2月号 ). 
  7. ^ エネルギー・資源、13 (1) pp.60-65 (1992)
  8. ^ Nuclear Sci. and Tech., 50, pp.178-186 (1980)
  9. ^ 原子力工業、34 (4) pp.63-69 (1988)
  10. ^ Bulletin of the Research Lab for Atomic Reactors, 1 (1) pp.201-204 (1992)
  11. ^ Journal of Nuclear Science and Technology, 27 (11) pp.983-995 (1990)
  12. ^ Die Angewandte Makromolekulare Chemie, 88 (157) pp.123-136 (1988)

外部リンク[編集]