Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Chemistry  





2 Biochemistry  



2.1  Pyruvic acid production by glycolysis  





2.2  Decarboxylation to acetyl CoA  





2.3  Carboxylation to oxaloacetate  





2.4  Transamination to alanine  





2.5  Reduction to lactate  





2.6  Environmental chemistry  







3 Uses  





4 See also  





5 Notes  





6 References  





7 External links  














Pyruvic acid






العربية
تۆرکجه

Български
Bosanski
Català
Čeština
Dansk
Deutsch
Ελληνικά
Español
Esperanto
Euskara
فارسی
Français
Gaeilge
Galego

Հայերեն
ि
Hrvatski
Bahasa Indonesia
Italiano
עברית

Latina
Latviešu
Lëtzebuergesch
Magyar
Македонски
Bahasa Melayu
Nederlands

Norsk bokmål
Oʻzbekcha / ўзбекча
Polski
Português
Română
Русский
Sicilianu
Simple English
Slovenčina
Slovenščina
Српски / srpski
Srpskohrvatski / српскохрватски
Suomi
Svenska

Türkçe
Українська
Tiếng Vit



 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Pyruvic acid
Names
Preferred IUPAC name

2-Oxopropanoic acid[1]

Systematic IUPAC name

2-Oxopropionic acid

Other names

Pyruvic acid[1]
α-Ketopropionic acid
Acetylformic acid
Pyroracemic acid
Acetoic acid
Acetylcarboxylic acid
Acetocarboxylic acid
Oxoacetol

Identifiers

CAS Number

3D model (JSmol)

Abbreviations Pyr
ChEBI
ChEMBL
ChemSpider
DrugBank
ECHA InfoCard 100.004.387 Edit this at Wikidata

IUPHAR/BPS

KEGG

PubChem CID

UNII

CompTox Dashboard (EPA)

  • InChI=1S/C3H4O3/c1-2(4)3(5)6/h1H3,(H,5,6) checkY

    Key: LCTONWCANYUPML-UHFFFAOYSA-N checkY

  • O=C(C(=O)O)C

Properties

Chemical formula

C3H4O3
Molar mass 88.06 g/mol
Density 1.250 g/cm3
Melting point 11.8 °C (53.2 °F; 284.9 K)
Boiling point 165 °C (329 °F; 438 K)
Acidity (pKa) 2.50[2]
Related compounds

Other anions

Pyruvate

Related keto-acids, carboxylic acids

  • Glyoxylic acid
  • Oxalic acid
  • Propionic acid
  • Acetoacetic acid
  • Related compounds

  • Glyceraldehyde
  • Methylglyoxal
  • Sodium pyruvate
  • Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

    ☒N verify (what is checkY☒N ?)

    Infobox references

    Pyruvic acid (IUPAC name: 2-oxopropanoic acid, also called acetoic acid) (CH3COCOOH) is the simplest of the alpha-keto acids, with a carboxylic acid and a ketone functional group. Pyruvate, the conjugate base, CH3COCOO, is an intermediate in several metabolic pathways throughout the cell.

    Pyruvic acid can be made from glucose through glycolysis, converted back to carbohydrates (such as glucose) via gluconeogenesis, or converted to fatty acids through a reaction with acetyl-CoA.[3] It can also be used to construct the amino acid alanine and can be converted into ethanolorlactic acid via fermentation.

    Pyruvic acid supplies energy to cells through the citric acid cycle (also known as the Krebs cycle) when oxygen is present (aerobic respiration), and alternatively ferments to produce lactate when oxygen is lacking.[4]

    Chemistry[edit]

    In 1834, Théophile-Jules Pelouze distilled tartaric acid and isolated glutaric acid and another unknown organic acid. Jöns Jacob Berzelius characterized this other acid the following year and named pyruvic acid because it was distilled using heat.[5][6] The correct molecular structure was deduced by the 1870s.[7]

    Pyruvic acid is a colorless liquid with a smell similar to that of acetic acid and is miscible with water.[8] In the laboratory, pyruvic acid may be prepared by heating a mixture of tartaric acid and potassium hydrogen sulfate,[9] by the oxidationofpropylene glycol by a strong oxidizer (e.g., potassium permanganateorbleach), or by the hydrolysis of acetyl cyanide, formed by reaction of acetyl chloride with potassium cyanide:[citation needed]

    CH3COCl + KCN → CH3COCN + KCl
    CH3COCN → CH3COCOOH

    Biochemistry[edit]

    Pyruvate is an important chemical compoundinbiochemistry. It is the output of the metabolism of glucose known as glycolysis.[10] One molecule of glucose breaks down into two molecules of pyruvate,[10] which are then used to provide further energy, in one of two ways. Pyruvate is converted into acetyl-coenzyme A, which is the main input for a series of reactions known as the Krebs cycle (also known as the citric acid cycle or tricarboxylic acid cycle). Pyruvate is also converted to oxaloacetate by an anaplerotic reaction, which replenishes Krebs cycle intermediates; also, the oxaloacetate is used for gluconeogenesis.[citation needed]

    These reactions are named after Hans Adolf Krebs, the biochemist awarded the 1953 Nobel Prize for physiology, jointly with Fritz Lipmann, for research into metabolic processes. The cycle is also known as the citric acid cycle or tricarboxylic acid cycle, because citric acid is one of the intermediate compounds formed during the reactions.[citation needed]

    If insufficient oxygen is available, the acid is broken down anaerobically, creating lactate in animals and ethanol in plants and microorganisms (and carp[11]). Pyruvate from glycolysis is converted by fermentationtolactate using the enzyme lactate dehydrogenase and the coenzyme NADH in lactate fermentation, or to acetaldehyde (with the enzyme pyruvate decarboxylase) and then to ethanolinalcoholic fermentation.[citation needed]

    Pyruvate is a key intersection in the network of metabolic pathways. Pyruvate can be converted into carbohydrates via gluconeogenesis, to fatty acids or energy through acetyl-CoA, to the amino acid alanine, and to ethanol. Therefore, it unites several key metabolic processes.[citation needed]

    Reference ranges for blood tests, comparing blood content of pyruvate (shown in violet near middle) with other constituents.

    Pyruvic acid production by glycolysis[edit]

    In the last step of glycolysis, phosphoenolpyruvate (PEP) is converted to pyruvate by pyruvate kinase. This reaction is strongly exergonic and irreversible; in gluconeogenesis, it takes two enzymes, pyruvate carboxylase and PEP carboxykinase, to catalyze the reverse transformation of pyruvate to PEP.[citation needed]

    phosphoenolpyruvate pyruvate kinase pyruvic acid
     
    ADP ATP
    ADP ATP
     
      pyruvate carboxylase and PEP carboxykinase

    Compound C00074atKEGG Pathway Database. Enzyme 2.7.1.40atKEGG Pathway Database. Compound C00022atKEGG Pathway Database.

    Click on genes, proteins and metabolites below to link to respective articles.[§ 1]

    [[File:

    GlycolysisGluconeogenesis_WP534go to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to WikiPathwaysgo to articlego to Entrezgo to article

    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]

    GlycolysisGluconeogenesis_WP534go to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to WikiPathwaysgo to articlego to Entrezgo to article

    |alt=Glycolysis and Gluconeogenesis edit]] Glycolysis and Gluconeogenesis edit
    1. ^ The interactive pathway map can be edited at WikiPathways: "GlycolysisGluconeogenesis_WP534".

    Decarboxylation to acetyl CoA[edit]

    Pyruvate decarboxylation by the pyruvate dehydrogenase complex produces acetyl-CoA.

    pyruvate pyruvate dehydrogenase complex acetyl-CoA
     
    CoA + NAD+ CO2 + NADH +H+
     
     


    Carboxylation to oxaloacetate[edit]

    Carboxylation by pyruvate carboxylase produces oxaloacetate.

    pyruvate pyruvate carboxylase oxaloacetate
     
    ATP +CO2 ADP +Pi
     
     


    Transamination to alanine[edit]

    Transamination by alanine transaminase produces alanine.

    pyruvate alanine transaminase alanine
     
    glutamate α-ketoglutarate
    glutamate α-ketoglutarate
     
     


    Reduction to lactate[edit]

    Reduction by lactate dehydrogenase produces lactate.

    pyruvate lactate dehydrogenase lactate
     
    NADH NAD+
    NADH NAD+
     
     


    Environmental chemistry[edit]

    Pyruvic acid is an abundant carboxylic acid in secondary organic aerosols.[12]

    Uses[edit]

    Pyruvate is sold as a weight-loss supplement, though credible science has yet to back this claim. A systematic review of six trials found a statistically significant difference in body weight with pyruvate compared to placebo. However, all of the trials had methodological weaknesses and the magnitude of the effect was small. The review also identified adverse events associated with pyruvate such as diarrhea, bloating, gas, and increase in low-density lipoprotein (LDL) cholesterol. The authors concluded that there was insufficient evidence to support the use of pyruvate for weight loss.[13]

    There is also in vitro as well as in vivo evidence in hearts that pyruvate improves metabolism by NADH production stimulation and increases cardiac function.[14][15]

    See also[edit]

    Notes[edit]

    1. ^ a b Nomenclature of Organic Chemistry: IUPAC Recommendations and Preferred Names 2013 (Blue Book). Cambridge: The Royal Society of Chemistry. 2014. p. 748. doi:10.1039/9781849733069-FP001 (inactive 2024-04-10). ISBN 978-0-85404-182-4.{{cite book}}: CS1 maint: DOI inactive as of April 2024 (link)
  • ^ Dawson, R. M. C.; et al. (1959). Data for Biochemical Research. Oxford: Clarendon Press.
  • ^ Fox, Stuart Ira (2011). Human Physiology (12th ed.). McGraw=Hill. p. 146.[ISBN missing]
  • ^ Ophardt, Charles E. "Pyruvic Acid - Cross Roads Compound". Virtual Chembook. Elmhurst College. Archived from the original on July 31, 2018. Retrieved April 7, 2017.
  • ^ Thomson, Thomas (1838). "Chapter II. Of fixed acids Section". Chemistry of organic bodies, vegetables. London: J. B. Baillière. p. 65. Retrieved December 1, 2010.
  • ^ Berzelius, J. (1835). "Ueber eine neue, durch Destillation von Wein-und Traubensäure erhaltene Säure". Annalen der Pharmacie. 13 (1): 61–63. doi:10.1002/jlac.18350130109.
  • ^ "Pyruvic acid". Journal of the Chemical Society, Abstracts. 34: 31. 1878. doi:10.1039/CA8783400019.
  • ^ "Pyruvic Acid". ChemSpider. Royal Society of Chemistry. Retrieved 21 April 2017.
  • ^ Howard, J. W.; Fraser, W. A. "Pyruvic Acid". Organic Syntheses. 4: 63; Collected Volumes, vol. 1, p. 475.
  • ^ a b Lehninger, Albert L.; Nelson, David L.; Cox, Michael M. (2008). Principles of Biochemistry (5th ed.). New York, NY: W. H. Freeman and Company. p. 528. ISBN 978-0-7167-7108-1.
  • ^ Aren van Waarde; G. Van den Thillart; Maria Verhagen (1993). "Ethanol Formation and pH-Regulation in Fish". Surviving Hypoxia. CRC Press. pp. 157–170. hdl:11370/3196a88e-a978-4293-8f6f-cd6876d8c428. ISBN 0-8493-4226-0.
  • ^ Guzman, Marcelo I.; Eugene, Alexis J. (2021-09-01). "Aqueous Photochemistry of 2-Oxocarboxylic Acids: Evidence, Mechanisms, and Atmospheric Impact". Molecules. 26 (17): 5278. doi:10.3390/molecules26175278. PMC 8433822. PMID 34500711.
  • ^ Onakpoya, I.; Hunt, K.; Wider, B.; Ernst, E. (2014). "Pyruvate supplementation for weight loss: a systematic review and meta-analysis of randomized clinical trials". Crit. Rev. Food Sci. Nutr. 54 (1): 17–23. doi:10.1080/10408398.2011.565890. PMID 24188231. S2CID 20241217.
  • ^ Jaimes, R. III (Jul 2015). "Functional response of the isolated, perfused normoxic heart to pyruvate dehydrogenase activation by dichloroacetate and pyruvate". Pflügers Arch. 468 (1): 131–42. doi:10.1007/s00424-015-1717-1. PMC 4701640. PMID 26142699.
  • ^ Hermann, H. P.; Pieske, B.; Schwarzmüller, E.; Keul, J.; Just, H.; Hasenfuss, G. (1999-04-17). "Haemodynamic effects of intracoronary pyruvate in patients with congestive heart failure: an open study". Lancet. 353 (9161): 1321–1323. doi:10.1016/s0140-6736(98)06423-x. ISSN 0140-6736. PMID 10218531. S2CID 25126646.
  • References[edit]

    External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Pyruvic_acid&oldid=1223756985"

    Categories: 
    Alpha-keto acids
    Cellular respiration
    Exercise physiology
    Metabolism
    Glycolysis
    Hidden categories: 
    CS1 maint: DOI inactive as of April 2024
    Pages with missing ISBNs
    Articles with short description
    Short description matches Wikidata
    Articles without InChI source
    ECHA InfoCard ID from Wikidata
    Articles with changed KEGG identifier
    Articles containing unverified chemical infoboxes
    Short description is different from Wikidata
    All articles with unsourced statements
    Articles with unsourced statements from December 2023
    Articles needing additional references from December 2023
    All articles needing additional references
    Commons category link from Wikidata
    Articles with GND identifiers
    Articles with J9U identifiers
    Articles with LCCN identifiers
    Articles with NKC identifiers
     



    This page was last edited on 14 May 2024, at 04:16 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki