Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Discovery  





2 Forms and nomenclature  





3 Synthesis  



3.1  Biosynthesis  





3.2  Chemical synthesis  







4 Metabolism  





5 Other biochemical roles  



5.1  Interactive pathway map  





5.2  Neurotransmitter  







6 Applications & market  



6.1  Superabsorbent polymers  





6.2  Additional uses  







7 Sources  



7.1  Dietary sources  







8 See also  





9 References  





10 External links  














Aspartic acid






العربية
Azərbaycanca
تۆرکجه

 / Bân-lâm-gú
Беларуская
Български
Bosanski
Català
Čeština
Deutsch
Eesti
Ελληνικά
Español
Esperanto
Euskara
فارسی
Français
Gaeilge
Galego

Հայերեն
ि
Hrvatski
Bahasa Indonesia
Italiano
עברית
Қазақша
Kurdî
Кыргызча
Latviešu
Lëtzebuergesch
Lietuvių
Magyar
Македонски
Bahasa Melayu
Nederlands

Norsk bokmål
Norsk nynorsk
Occitan
Oʻzbekcha / ўзбекча
Polski
Português
Română
Русский
Scots
Simple English
Slovenčina
Slovenščina
Српски / srpski
Srpskohrvatski / српскохрватски
Sunda
Suomi
Svenska
ி

Türkçe
Українська
Tiếng Vit



 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Aspartyl)

Aspartic acid

Skeletal formulaofL-aspartic acid

Ball-and-stick model

Space-filling model

Names
IUPAC name
  • Trivial: Aspartic acid
  • Systematic: 2-Aminobutanedioic acid
  • Other names
    • Aminosuccinic acid
  • Asparagic acid
  • Asparaginic acid[1]
  • Identifiers

    CAS Number

  • D/L: 617-45-8 checkY
  • D: 1783-96-6 checkY
  • 3D model (JSmol)

  • D: Interactive image
  • LZwitterion: Interactive image
  • L Deprotonated zwitterion (aspartate): Interactive image
  • ChEBI
  • D/L: CHEBI:22660 checkY
  • D: CHEBI:17364 checkY
  • ChEMBL
    ChemSpider
  • D/L: 411 checkY
  • D: 75697 checkY
  • DrugBank
    ECHA InfoCard 100.000.265 Edit this at Wikidata
    EC Number
    • L: 200-291-6
    KEGG

    PubChem CID

  • D/L: 424
  • D: 83887
  • UNII
  • D/L: 28XF4669EP checkY
  • D: 4SR0Q8YD1X checkY
  • CompTox Dashboard (EPA)

    • InChI=1S/C4H7NO4/c5-2(4(8)9)1-3(6)7/h2H,1,5H2,(H,6,7)(H,8,9)/t2-/m0/s1 checkY

      Key: CKLJMWTZIZZHCS-REOHCLBHSA-N checkY

    • D/L: Key: CKLJMWTZIZZHCS-UHFFFAOYSA-N

    • D: Key: CKLJMWTZIZZHCS-UWTATZPHSA-N

    • L: C([C@@H](C(=O)O)N)C(=O)O

    • D/L: C(C(C(=O)O)N)C(=O)O

    • D: C([C@H](C(=O)O)N)C(=O)O

    • LZwitterion: C(C(C(=O)[O-])[NH3+])C(=O)O

    • L Deprotonated zwitterion (aspartate): C(C(C(=O)[O-])[NH3+])C(=O)[O-]

    Properties

    Chemical formula

    C4H7NO4
    Molar mass 133.103 g·mol−1
    Appearance colourless crystals
    Density 1.7 g/cm3
    Melting point 270 °C (518 °F; 543 K)
    Boiling point 324 °C (615 °F; 597 K) (decomposes)

    Solubility in water

    4.5 g/L[2]
    Acidity (pKa)
    • 1.99 (α-carboxyl; H2O)
  • 3.90 (side chain; H2O)
  • 9.90 (amino; H2O)[3]
  • Conjugate base Aspartate

    Magnetic susceptibility (χ)

    -64.2·10−6cm3/mol
    Hazards
    NFPA 704 (fire diamond)
    NFPA 704 four-colored diamondHealth 1: Exposure would cause irritation but only minor residual injury. E.g. turpentineFlammability 1: Must be pre-heated before ignition can occur. Flash point over 93 °C (200 °F). E.g. canola oilInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
    1
    1
    0
    Supplementary data page
    Aspartic acid (data page)

    Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

    Infobox references

    Aspartic acid (symbol AsporD;[4] the ionic form is known as aspartate), is an α-amino acid that is used in the biosynthesis of proteins.[5] The L-isomer of aspartic acid is one of the 22 proteinogenic amino acids, i.e., the building blocks of proteins. D-aspartic acid is one of two D-amino acids commonly found in mammals.[6][7] Apart from a few rare exceptions, D-aspartic acid is not used for protein synthesis but is incorporated into some peptides and plays a role as a neurotransmitter/neuromodulator.[6]

    Like all other amino acids, aspartic acid contains an amino group and a carboxylic acid. Its α-amino group is in the protonated –NH+
    3
    form under physiological conditions, while its α-carboxylic acid group is deprotonated −COO under physiological conditions. Aspartic acid has an acidic side chain (CH2COOH) which reacts with other amino acids, enzymes and proteins in the body.[5] Under physiological conditions (pH 7.4) in proteins the side chain usually occurs as the negatively charged aspartate form, −COO.[5] It is a non-essential amino acid in humans, meaning the body can synthesize it as needed. It is encoded by the codons GAU and GAC.

    In proteins aspartate sidechains are often hydrogen bonded to form asx turnsorasx motifs, which frequently occur at the N-termini of alpha helices.

    Aspartic acid, like glutamic acid, is classified as an acidic amino acid, with a pKa of 3.9; however, in a peptide this is highly dependent on the local environment, and could be as high as 14.

    The one-letter code D for aspartate was assigned arbitrarily,[8] with the proposed memnonic asparDic acid.[9]

    Discovery[edit]

    Aspartic acid was first discovered in 1827 by Auguste-Arthur Plisson and Étienne Ossian Henry[10][11]byhydrolysisofasparagine, which had been isolated from asparagus juice in 1806.[12] Their original method used lead hydroxide, but various other acids or bases are now more commonly used instead.[citation needed]

    Forms and nomenclature[edit]

    There are two forms or enantiomers of aspartic acid. The name "aspartic acid" can refer to either enantiomer or a mixture of two.[13] Of these two forms, only one, "L-aspartic acid", is directly incorporated into proteins. The biological roles of its counterpart, "D-aspartic acid" are more limited. Where enzymatic synthesis will produce one or the other, most chemical syntheses will produce both forms, "DL-aspartic acid", known as a racemic mixture.[citation needed]

    Synthesis[edit]

    Biosynthesis[edit]

    In the human body, aspartate is most frequently synthesized through the transaminationofoxaloacetate. The biosynthesis of aspartate is facilitated by an aminotransferase enzyme: the transfer of an amine group from another molecule such as alanine or glutamine yields aspartate and an alpha-keto acid.[5]

    Chemical synthesis[edit]

    Industrially, aspartate is produced by amination of fumarate catalyzed by L-aspartate ammonia-lyase.[14]

    Racemic aspartic acid can be synthesized from diethyl sodium phthalimidomalonate, (C6H4(CO)2NC(CO2Et)2).[15]

    Metabolism[edit]

    In plants and microorganisms, aspartate is the precursor to several amino acids, including four that are essential for humans: methionine, threonine, isoleucine, and lysine. The conversion of aspartate to these other amino acids begins with reduction of aspartate to its "semialdehyde", O2CCH(NH2)CH2CHO.[16] Asparagine is derived from aspartate via transamidation:

    O2CCH(NH2)CH2CO2 + GC(O)NH3+ → O2CCH(NH2)CH2CONH3+ + GC(O)O

    (where GC(O)NH2 and GC(O)OH are glutamine and glutamic acid, respectively)

    Other biochemical roles[edit]

    Aspartate has many other biochemical roles. It is a metabolite in the urea cycle[17] and participates in gluconeogenesis. It carries reducing equivalents in the malate-aspartate shuttle, which utilizes the ready interconversion of aspartate and oxaloacetate, which is the oxidized (dehydrogenated) derivative of malic acid. Aspartate donates one nitrogen atom in the biosynthesis of inosine, the precursor to the purine bases. In addition, aspartic acid acts as a hydrogen acceptor in a chain of ATP synthase. Dietary L-aspartic acid has been shown to act as an inhibitor of Beta-glucuronidase, which serves to regulate enterohepatic circulationofbilirubin and bile acids.[18]

    Interactive pathway map[edit]

    Click on genes, proteins and metabolites below to link to respective articles.[§ 1]

    [[File:

    GlycolysisGluconeogenesis_WP534go to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to WikiPathwaysgo to articlego to Entrezgo to article

    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]
    [[

    ]]

    GlycolysisGluconeogenesis_WP534go to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to WikiPathwaysgo to articlego to Entrezgo to article

    |alt=Glycolysis and Gluconeogenesis edit]] Glycolysis and Gluconeogenesis edit
    1. ^ The interactive pathway map can be edited at WikiPathways: "GlycolysisGluconeogenesis_WP534".

    Neurotransmitter[edit]

    Aspartate (the conjugate base of aspartic acid) stimulates NMDA receptors, though not as strongly as the amino acid neurotransmitter L-glutamate does.[19]

    Applications & market[edit]

    In 2014, the global market for aspartic acid was 39.3 thousand short tons (35.7 thousand tonnes)[20] or about $117 million annually[21] with potential areas of growth accounting for an addressable market[clarification needed] of $8.78 billion (Bn).[22] The three largest market segments include the U.S., Western Europe, and China. Current applications include biodegradable polymers (polyaspartic acid), low calorie sweeteners (aspartame), scale and corrosion inhibitors, and resins.[citation needed]

    Superabsorbent polymers[edit]

    One area of aspartic acid market growth is biodegradable superabsorbent polymers (SAP), and hydrogels.[23] The superabsorbent polymers market is anticipated to grow at a compound annual growth rate of 5.5% from 2014 to 2019 to reach a value of $8.78Bn globally.[22] Around 75% of superabsorbent polymers are used in disposable diapers and an additional 20% is used for adult incontinence and feminine hygiene products. Polyaspartic acid, the polymerization product of aspartic acid, is a biodegradable substitute to polyacrylate.[23][24][25] The polyaspartate market comprises a small fraction (est. < 1%) of the total SAP market.[citation needed]

    Additional uses[edit]

    In addition to SAP, aspartic acid has applications in the $19Bn fertilizer industry, where polyaspartate improves water retention and nitrogen uptake;[26] the $1.1Bn (2020) concrete floor coatings market, where polyaspartic is a low VOC, low energy alternative to traditional epoxy resins;[27] and lastly the >$5Bn scale and corrosion inhibitors market.[28]

    Sources[edit]

    Dietary sources[edit]

    Aspartic acid is not an essential amino acid, which means that it can be synthesized from central metabolic pathway intermediates in humans, and does not need to be present in the diet. In eukaryotic cells, roughly 1 in 20 amino acids incorporated into a protein is an aspartic acid,[29] and accordingly almost any source of dietary protein will include aspartic acid. Additionally, aspartic acid is found in:

    See also[edit]

    References[edit]

    1. ^ Budavari, Susan; Co, Merck (1989). "862. Aspartic acid". The Merck Index (11th ed.). Merck. p. 132. ISBN 978-0-911910-28-5.
  • ^ "ICSC 1439 - L-ASPARTIC ACID". inchem.org.
  • ^ Haynes, William M., ed. (2016). CRC Handbook of Chemistry and Physics (97th ed.). CRC Press. pp. 5–89. ISBN 978-1498754286.
  • ^ "Nomenclature and Symbolism for Amino Acids and Peptides". IUPAC-IUB Joint Commission on Biochemical Nomenclature. 1983. Archived from the original on 9 October 2008. Retrieved 5 March 2018.
  • ^ a b c d G., Voet, Judith; W., Pratt, Charlotte (2016-02-29). Fundamentals of biochemistry : life at the molecular level. John Wiley & Sons. ISBN 9781118918401. OCLC 910538334.{{cite book}}: CS1 maint: multiple names: authors list (link)
  • ^ a b D'Aniello, Antimo (1 February 2007). "d-Aspartic acid: An endogenous amino acid with an important neuroendocrine role". Brain Research Reviews. 53 (2): 215–234. doi:10.1016/j.brainresrev.2006.08.005. PMID 17118457. S2CID 12709991.
  • ^ Huang AS, Beigneux A, Weil ZM, Kim PM, Molliver ME, Blackshaw S, Nelson RJ, Young SG, Snyder SH (March 2006). "D-aspartate regulates melanocortin formation and function: behavioral alterations in D-aspartate oxidase-deficient mice". The Journal of Neuroscience. 26 (10): 2814–9. doi:10.1523/JNEUROSCI.5060-05.2006. PMC 6675153. PMID 16525061.
  • ^ "IUPAC-IUB Commission on Biochemical Nomenclature A One-Letter Notation for Amino Acid Sequences". Journal of Biological Chemistry. 243 (13): 3557–3559. 10 July 1968. doi:10.1016/S0021-9258(19)34176-6.
  • ^ Adoga, Godwin I; Nicholson, Bh (January 1988). "Letters to the editor". Biochemical Education. 16 (1): 49. doi:10.1016/0307-4412(88)90026-X.
  • ^ Plisson, A. (October 1827). "Sur l'identité du malate acide d'althéine avec l'asparagine (1); et sur un acide nouveau" [On the identity of altheine acid malate with asparagine (1); and on a new acid]. Journal de Pharmacie (in French). 13 (10): 477–492.
  • ^ Berzelius JJ, Öngren OG (1839). Traité de chimie (in French). Vol. 3. Brussels: A. Wahlen et Cie. p. 81. Retrieved 25 August 2015.
  • ^ Plimmer R (1912) [1908]. Plimmer R, Hopkins F (eds.). The chemical composition of the proteins. Monographs on Biochemistry. Vol. Part I. Analysis (2nd ed.). London: Longmans, Green and Co. p. 112. Retrieved January 18, 2010.
  • ^ "Nomenclature and symbolism for amino acids and peptides (IUPAC-IUB Recommendations 1983)", Pure Appl. Chem., 56 (5): 595–624, 1984, doi:10.1351/pac198456050595.
  • ^ Karlheinz Drauz, Ian Grayson, Axel Kleemann, Hans-Peter Krimmer, Wolfgang Leuchtenberger, Christoph Weckbecker (2006). Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a02_057.pub2. ISBN 978-3527306732.{{cite encyclopedia}}: CS1 maint: multiple names: authors list (link)
  • ^ Dunn MS, Smart BW (1950). "DL-Aspartic Acid". Organic Syntheses. 30: 7; Collected Volumes, vol. 4, p. 55..
  • ^ Lehninger AL, Nelson DL, Cox MM (2000). Principles of Biochemistry (3rd ed.). New York: W. H. Freeman. ISBN 1-57259-153-6.
  • ^ "Biochemistry - Biochemistry". www.varsitytutors.com. Retrieved 2022-02-18.
  • ^ Kreamer, Siegel, & Gourley (Oct 2001). "A novel inhibitor of beta-glucuronidase: L-aspartic acid". Pediatric Research. 50 (4): 460–466. doi:10.1203/00006450-200110000-00007. PMID 11568288.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  • ^ Chen PE, Geballe MT, Stansfeld PJ, Johnston AR, Yuan H, Jacob AL, Snyder JP, Traynelis SF, Wyllie DJ (May 2005). "Structural features of the glutamate binding site in recombinant NR1/NR2A N-methyl-D-aspartate receptors determined by site-directed mutagenesis and molecular modeling". Molecular Pharmacology. 67 (5): 1470–84. doi:10.1124/mol.104.008185. PMID 15703381. S2CID 13505187.
  • ^ "Global Aspartic Acid Market By Application". Grand View Research. Retrieved November 30, 2019.
  • ^ Evans J (2014). Commercial Amino Acids. BCC Research. pp. 101–103.
  • ^ a b Transparency Market Research. Superabsorbent polymers market - global industry analysis, size, share, growth, trends and forecase, 2014-2020. (2014).
  • ^ a b Adelnia, Hossein; Blakey, Idriss; Little, Peter J.; Ta, Hang T. (2019). "Hydrogels Based on Poly(aspartic acid): Synthesis and Applications". Frontiers in Chemistry. 7: 755. Bibcode:2019FrCh....7..755A. doi:10.3389/fchem.2019.00755. ISSN 2296-2646. PMC 6861526. PMID 31799235.
  • ^ Adelnia, Hossein; Tran, Huong D.N.; Little, Peter J.; Blakey, Idriss; Ta, Hang T. (2021-06-14). "Poly(aspartic acid) in Biomedical Applications: From Polymerization, Modification, Properties, Degradation, and Biocompatibility to Applications". ACS Biomaterials Science & Engineering. 7 (6): 2083–2105. doi:10.1021/acsbiomaterials.1c00150. hdl:10072/404497. PMID 33797239. S2CID 232761877.
  • ^ Alford DD, Wheeler AP, Pettigrew CA (1994). "Biodegradation of thermally synthesized polyaspartate". J Environ Polym Degr. 2 (4): 225–236. Bibcode:1994JEPD....2..225A. doi:10.1007/BF02071970.
  • ^ Kelling K (2001). Crop Responses to Amisorb in the North Central Region. University of Wisconsin-Madison.
  • ^ Global concrete floor coatings market will be worth US$1.1Bn by 2020. Transparency Market Research (2015).
  • ^ Corrosion inhibitors market analysis by product, by application, by end-use industry, and segment forecasts to 2020. Grand View Research (2014)
  • ^ Kozlowski LP (January 2017). "Proteome-pI: proteome isoelectric point database". Nucleic Acids Research. 45 (D1): D1112–D1116. doi:10.1093/nar/gkw978. PMC 5210655. PMID 27789699.
  • External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Aspartic_acid&oldid=1219588787"

    Categories: 
    Aspartic acids
    Glucogenic amino acids
    Excitatory amino acids
    Urea cycle
    NMDA receptor agonists
    Hidden categories: 
    CS1 maint: multiple names: authors list
    CS1 French-language sources (fr)
    CS1: long volume value
    Articles with short description
    Short description is different from Wikidata
    Chemical articles with multiple compound IDs
    Chemicals using indexlabels
    Chemical articles with multiple CAS registry numbers
    Chemical articles with multiple PubChem CIDs
    Chemical articles with multiple ChEBIs
    Articles without InChI source
    Chemical articles having Jmol set
    Chemical articles having Jmol set/None
    ECHA InfoCard ID from Wikidata
    Chemical articles having a data page
    Articles containing unverified chemical infoboxes
    Chembox image size set
    Short description matches Wikidata
    All articles with unsourced statements
    Articles with unsourced statements from January 2021
    Wikipedia articles needing clarification from March 2017
    Articles needing additional references from January 2021
    All articles needing additional references
    Articles with GND identifiers
    Articles with J9U identifiers
    Articles with LCCN identifiers
     



    This page was last edited on 18 April 2024, at 17:15 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki