Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Function  





2 Structure  





3 Comparison to other ribosomes  





4 Diseases  





5 Genes  





6 References  





7 Further reading  














Mitochondrial ribosome: Difference between revisions






Deutsch
Español
فارسی
Italiano
Русский
Türkçe
Українська

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 





Help
 

From Wikipedia, the free encyclopedia
 


Browse history interactively
 Previous edit
Content deleted Content added
OAbot (talk | contribs)
425,242 edits
m Open access bot: doi updated in citation with #oabot.
 
(45 intermediate revisions by 23 users not shown)
Line 1: Line 1:

{{Short description|Protein complex}}

[[File:Mitochondrion structure.svg|thumb|300px|A diagram showing [[mtDNA]] (circular) and mitochondrial ribosomes among other mitochondria structures]]

[[File:Mitochondrion structure.svg|thumb|300px|A diagram showing [[mtDNA]] (circular) and mitochondrial ribosomes among other mitochondria structures]]

'''Mitochondrial ribosome''' or '''mitoribosome''' is a [[Protein complexes|protein complex]] that is active in [[mitochondria]] and functions as a [[Ribosomal protein|riboprotein]] for [[Translation (biology)|translating]] mitochondrial [[mRNA]]s encoded in [[mtDNA]]. Mitoribosomes, like [[cytoplasm]]ic [[ribosome]]s, consist of two subunits — large (mtLSU) and small (mt-SSU).<ref name="AmuntsBrown2015">{{Cite journal |author1=Alexey Amunts |author2=Alan Brown |author3=Jaan Toots |author4=Sjors H. W. Scheres |author5=V. Ramakrishnan |title = Ribosome. The structure of the human mitochondrial ribosome |journal = [[Science (journal)|Science]] |volume = 348 |issue = 6230 |pages = 95–98 |year = 2015 |doi = 10.1126/science.aaa1193 |pmid = 25838379 |pmc=4501431}}</ref> However, the ratio of [[rRNA]]/protein is different from cytoplasmic ribosomes, mitoribosomes consist of several specific proteins and less rRNAs.<ref name="AmuntsBrown2015"/>

The '''mitochondrial ribosome''', or '''mitoribosome''', is a [[Protein complexes|protein complex]] that is active in [[mitochondria]] and functions as a [[Ribosomal protein|riboprotein]] for [[Translation (biology)|translating]] mitochondrial [[mRNA]]s encoded in [[mtDNA]]. The mitoribosome is attached to the [[inner mitochondrial membrane]].<ref name=":02" /> Mitoribosomes, like [[cytoplasm]]ic [[ribosome]]s, consist of two subunits — large (mt-LSU) and small (mt-SSU).<ref name="AmuntsBrown2015">{{cite journal | vauthors = Amunts A, Brown A, Toots J, Scheres SH, RamakrishnanV| title = Ribosome. The structure of the human mitochondrial ribosome | journal = Science | volume = 348 | issue = 6230 | pages = 95–98 | date = April 2015 | pmid = 25838379 | pmc = 4501431 | doi = 10.1126/science.aaa1193 }}</ref> Mitoribosomes consistof several specific proteins and fewer rRNAs.<ref name="AmuntsBrown2015"/> While mitochondrial rRNAs are encoded in the [[Mitochondrial DNA|mitochondrial genome]], the proteins that make up mitoribosomes are encoded in the [[Cell nucleus|nucleus]] and assembled by cytoplasmic ribosomes before being implanted into the mitochondria.<ref name=":3">{{cite journal | vauthors = Sylvester JE, Fischel-Ghodsian N, Mougey EB, O'Brien TW | title = Mitochondrial ribosomal proteins: candidate genes for mitochondrial disease | journal = Genetics in Medicine | volume = 6 | issue = 2 | pages = 73–80 | date = March 2003 | pmid = 15017329 | doi = 10.1097/01.GIM.0000117333.21213.17 | s2cid = 22169585 | doi-access = free }}</ref>



== Function ==

== Function ==

Mitochondria contain around 1000 proteins in [[yeast]] and 1500 proteins in human organisms; however only 8 and 13 proteins are encoded in mtDNA in yeast and human, respectively. Mostof mitochondrial proteins are synthesized via cytoplasmic ribosomes.<ref name="WenzOpaliński2015">{{cite journal|last1=Wenz|first1=Lena-Sophie|last2=Opaliński|first2=Łukasz|last3=Wiedemann|first3=Nils|last4=Becker|first4=Thomas|title=Cooperation of protein machineries in mitochondrial protein sorting|journal=Biochimica et Biophysica Acta (BBA) - Molecular Cell Research|volume=1853|issue=5|year=2015|pages=1119–1129|issn=0167-4889|doi=10.1016/j.bbamcr.2015.01.012}}</ref> Proteins that are the key components in the [[electron transport chain]] are translated in mitochondria<ref name="JohnstonWilliams2016">{{cite journal|last1=Johnston|first1=Iain G.|last2=Williams|first2=Ben P.|title=Evolutionary Inference across Eukaryotes Identifies Specific Pressures Favoring Mitochondrial Gene Retention|journal=Cell Systems|year=2016|issn=2405-4712|doi=10.1016/j.cels.2016.01.013|volume=2|pages=101–111|pmid=27135164}}</ref><ref name="Hamers2016">{{cite journal|last1=Hamers|first1=Laurel|title=Why do our cell’s power plants have their own DNA?|journal=Science|year=2016|issn=0036-8075|doi=10.1126/science.aaf4083}}</ref>

Mitochondria contain around 1000 proteins in [[yeast]] and 1500 proteins in [[Human|humans]]. However, only 8 and 13 proteins are encoded in [[mitochondrial DNA]] in yeast and humans respectively. Most mitochondrial proteins are synthesized via cytoplasmic ribosomes.<ref name="WenzOpaliński2015">{{cite journal | vauthors = Wenz LS, Opaliński Ł, Wiedemann N, BeckerT| title = Cooperation of protein machineries in mitochondrial protein sorting | journal = Biochimica et Biophysica Acta (BBA) - Molecular Cell Research | volume = 1853 | issue = 5 | pages = 1119–1129 | date = May 2015 | pmid = 25633533 | doi = 10.1016/j.bbamcr.2015.01.012 | doi-access = free }}</ref> Proteins that are key components in the [[electron transport chain]] are translated in mitochondria.<ref name="JohnstonWilliams2016">{{cite journal | vauthors = Johnston IG, Williams BP| title = Evolutionary Inference across Eukaryotes Identifies Specific Pressures Favoring Mitochondrial Gene Retention | journal = Cell Systems | volume = 2 | issue = 2 | pages = 101–111 | date = February 2016 | pmid = 27135164 | doi = 10.1016/j.cels.2016.01.013 | doi-access = free }}</ref><ref name="Hamers2016">{{cite journal| vauthors = HamersL|title=Why do our cell's power plants have their own DNA? |journal=Science |year=2016 |doi=10.1126/science.aaf4083 }}</ref>



== Structure ==

== Structure ==

[[Mammals|Mammalian]] mitoribosomes have small 28S and large 39S subunits, together forming a 55S mitoribosome.<ref name="GreberBieri2015">{{Cite journal |author1=Basil J. Greber |author2=Philipp Bieri |author3=Marc Leibundgut |author4=Alexander Leitner |author5=Ruedi Aebersold |author6=Daniel Boehringer |author7=Nenad Ban |title = Ribosome. The complete structure of the 55S mammalian mitochondrial ribosome |journal = [[Science (journal)|Science]] |volume = 348 |issue = 6232 |pages = 303–308 |year = 2015 |doi = 10.1126/science.aaa3872 |pmid = 25837512 }}</ref>

[[Mammals|Mammalian]] mitoribosomes have small 28S and large 39S subunits, together forming a 55S mitoribosome.<ref name="GreberBieri2015">{{cite journal | vauthors = Greber BJ, Bieri P, Leibundgut M, Leitner A, Aebersold R, Boehringer D, BanN | title = Ribosome. The complete structure of the 55S mammalian mitochondrial ribosome | journal = Science | volume = 348 | issue = 6232 | pages = 303–308 | date = April 2015 | pmid = 25837512 | doi = 10.1126/science.aaa3872 | hdl-access = free | s2cid = 206634178 | hdl = 20.500.11850/100390 }}</ref><ref name=":0">{{cite encyclopedia | vauthors = Spremulli LL |title=The Protein Biosynthetic Machinery of Mitochondria|date=2016-01-01 |encyclopedia=Encyclopedia of Cell Biology|pages=545–554| veditors = Bradshaw RA, Stahl PD |place= Waltham |publisher= Academic Press |doi=10.1016/b978-0-12-394447-4.10066-5 |isbn=978-0-12-394796-3 }}</ref> Plant mitoribosomes have small 33S and large 50S subunits, together forming a 78S mitoribosome.<ref name="GreberBieri2015" /><ref name=":0" />


[[Animal]] mitoribosomes only have two rRNAs, 12S (SSU) and 16S (LSU), both highly minimized compared to their larger homologues.<ref name="GreberBieri2015"/> Most eukaryotoes use [[5S ribosomal RNA#Presence in organelle ribosomes|5S mitoribosomal RNA]], animals, [[Fungus|fungi]], [[Alveolate|alveolates]] and [[Euglenozoa|euglenozoans]] being the exceptions.<ref name="Valach 2014">{{cite journal | vauthors = Valach M, Burger G, Gray MW, Lang BF | title = Widespread occurrence of organelle genome-encoded 5S rRNAs including permuted molecules | journal = Nucleic Acids Research | volume = 42 | issue = 22 | pages = 13764–13777 | date = December 2014 | pmid = 25429974 | pmc = 4267664 | doi = 10.1093/nar/gku1266 }}</ref> A variety of methods have evolved to fill in the gap left by a missing 5S, with animals co-opting a Mt-tRNA (Val in vertebrates).<ref name="GreberBieri2015"/><ref>{{cite journal | vauthors = Brown A, Amunts A, Bai XC, Sugimoto Y, Edwards PC, Murshudov G, Scheres SH, Ramakrishnan V | display-authors = 6 | title = Structure of the large ribosomal subunit from human mitochondria | journal = Science | volume = 346 | issue = 6210 | pages = 718–722 | date = November 2014 | pmid = 25278503 | pmc = 4246062 | doi = 10.1126/science.1258026 | bibcode = 2014Sci...346..718B }}</ref>


== Comparison to other ribosomes ==

Like mitochondria itself is descended from bacteria, mitochondrial ribosomes are descended from bacterial ribosomes.<ref name=":02">{{cite journal | vauthors = Greber BJ, Ban N | title = Structure and Function of the Mitochondrial Ribosome | journal = Annual Review of Biochemistry | volume = 85 | issue = 1 | pages = 103–132 | date = June 2016 | pmid = 27023846 | doi = 10.1146/annurev-biochem-060815-014343 | doi-access = free }}</ref> As mitochondria evolved however, the mitoribosome has significantly diverged from its bacterial cousins leading to differences in configuration and function.<ref name=":02" /> In configuration, the mitoribosome includes additional proteins in both its large and small subunits.<ref name=":02" /> In function, mitoribosomes are much more limited in the proteins they translate, only producing a few proteins, used mostly in the mitochondrial membrane. <ref name=":02" /> Below is a table showing some properties of different ribosomes:

{| class="wikitable"

|+Properties of mitoribosomes

!

!Bacteria<ref name=":02" /><ref name=":1">{{cite journal | vauthors = De Silva D, Tu YT, Amunts A, Fontanesi F, Barrientos A | title = Mitochondrial ribosome assembly in health and disease | journal = Cell Cycle | volume = 14 | issue = 14 | pages = 2226–2250 | date = 2015-07-18 | pmid = 26030272 | pmc = 4615001 | doi = 10.1080/15384101.2015.1053672 }}</ref>

!Cytosolic (Eukaryote)<ref name=":1" /><ref name=":02" />

!Mammalian mitochondria<ref name=":02" /><ref name=":1" />

!Yeast Mitochondria<ref name=":02" /><ref name=":1" />

!Plant Mitochondria <ref>{{cite journal | vauthors = Robles P, Quesada V | title = Emerging Roles of Mitochondrial Ribosomal Proteins in Plant Development | journal = International Journal of Molecular Sciences | volume = 18 | issue = 12 | date = December 2017 | page = 2595 | pmid = 29207474 | pmc = 5751198 | doi = 10.3390/ijms18122595 | doi-access = free }}</ref>

|-

![[Sedimentation coefficient|Sedimentation Coefficient]] (LSU/SSU)

|70S (50S/30S)

|80S (60S/40S)

|55S (39S/28S)

|74S (54S/37S)

|~80S

|-

!Number of proteins (LSU/SSU)

|54 (33/21)

|79-80 (46-47/33)

|80 (50/30)

|84 (46/38)

|68-80

|-

!Number of rRNAs (LSU/SSU)

|3 (2/1)

|4 (3/1)

|3 (2/1)

|2 (1/1)

|3 (2/1)

|}


== Diseases ==

As the mitoribosome is responsible for the manufacture of proteins necessary for the [[electron transport chain]], malfunctions in the mitoribosome can result in metabolic disease.<ref name=":12">{{cite journal | vauthors = De Silva D, Tu YT, Amunts A, Fontanesi F, Barrientos A | title = Mitochondrial ribosome assembly in health and disease | journal = Cell Cycle | volume = 14 | issue = 14 | pages = 2226–2250 | date = 2015-07-18 | pmid = 26030272 | pmc = 4615001 | doi = 10.1080/15384101.2015.1053672 }}</ref> <ref name=":3" /> In humans, disease particularly manifests in energy-reliant organs such as the [[heart]], [[brain]], and [[Skeletal muscle|muscle]].<ref name=":3" /> Disease either originates from [[Mutation|mutations]] in mitochondrial rRNA or [[Gene|genes]] encoding the mitoribosomal proteins.<ref name=":3" /> In the case of mitoribosomal protein mutation, [[heredity]] of disease follows [[Mendelian inheritance]] as these proteins are encoded in the nucleus.<ref name=":12" /> On the other hand, because mitochondrial rRNA is encoded in the mitochondria, mutations in rRNA are maternally inherited.<ref name=":12" /> Examples of diseases in humans caused by these mutations include [[Leigh syndrome]], deafness, [[Neurological disorder|neurological disorders]], and various [[Cardiomyopathy|cardiomyopathies]].<ref name=":12" /> In [[Plant|plants]], mutation in mitoribosomal proteins can result in stunted size and distorted leaf growth.<ref name=":2">{{cite journal | vauthors = Robles P, Quesada V | title = Emerging Roles of Mitochondrial Ribosomal Proteins in Plant Development | journal = International Journal of Molecular Sciences | volume = 18 | issue = 12 | date = December 2017 | page = 2595 | pmid = 29207474 | pmc = 5751198 | doi = 10.3390/ijms18122595 | doi-access = free }}</ref>


== Genes ==

The mitochondrial ribosomal protein nomenclature generally follows that of bacteria, with extra numbers used for mitochondrion-specific proteins. (For more information on the nomenclature, see {{section link|Ribosomal protein|Table of ribosomal proteins}}.)


* [[MRPS1]], [[MRPS2]], [[MRPS3]], [[MRPS4]], [[MRPS5]], [[MRPS6]], [[MRPS7]], [[MRPS8]], [[MRPS9]], [[MRPS10]], [[MRPS11]], [[MRPS12]], [[MRPS13]], [[MRPS14]], [[MRPS15]], [[MRPS16]], [[MRPS17]], [[MRPS18]], [[MRPS19]], [[MRPS20]], [[MRPS21]], [[MRPS22]], [[MRPS23]], [[MRPS24]], [[MRPS25]], [[MRPS26]], [[MRPS27]], [[MRPS28]], [[MRPS29]], [[MRPS30]], [[MRPS31]], [[MRPS32]], [[MRPS33]], [[MRPS34]], [[MRPS35]]

* [[MRPL1]], [[MRPL2]], [[MRPL3]], [[MRPL4]], [[MRPL5]], [[MRPL6]], [[MRPL7]], [[MRPL8]], [[MRPL9]], [[MRPL10]], [[MRPL11]], [[MRPL12]], [[MRPL13]], [[MRPL14]], [[MRPL15]], [[MRPL16]], [[MRPL17]], [[MRPL18]], [[MRPL19]], [[MRPL20]], [[MRPL21]], [[MRPL22]], [[MRPL23]], [[MRPL24]], [[MRPL25]], [[MRPL26]], [[MRPL27]], [[MRPL28]], [[MRPL29]], [[MRPL30]], [[MRPL31]], [[MRPL32]], [[MRPL33]], [[MRPL34]], [[MRPL35]], [[MRPL36]], [[MRPL37]], [[MRPL38]], [[MRPL39]], [[MRPL40]], [[MRPL41]], [[MRPL42]]

* rRNA: [[MT-RNR1]], [[MT-RNR2]], [[MT-TV (mitochondrial)]]



== References ==

== References ==

{{Reflist}}

{{Reflist}}


== Further reading ==

* {{cite journal | vauthors = Greber BJ, Ban N | title = Structure and Function of the Mitochondrial Ribosome | journal = Annual Review of Biochemistry | volume = 85 | pages = 103–132 | date = June 2016 | pmid = 27023846 | doi = 10.1146/annurev-biochem-060815-014343 | doi-access = free }}



{{GeneticTranslation}}

{{GeneticTranslation}}

Line 16: Line 65:

[[Category:Ribosomal proteins| ]]

[[Category:Ribosomal proteins| ]]

[[Category:Mitochondrial genetics]]

[[Category:Mitochondrial genetics]]




{{molecular-cell-biology-stub}}

{{molecular-cell-biology-stub}}


Latest revision as of 15:58, 14 December 2023

A diagram showing mtDNA (circular) and mitochondrial ribosomes among other mitochondria structures

The mitochondrial ribosome, or mitoribosome, is a protein complex that is active in mitochondria and functions as a riboprotein for translating mitochondrial mRNAs encoded in mtDNA. The mitoribosome is attached to the inner mitochondrial membrane.[1] Mitoribosomes, like cytoplasmic ribosomes, consist of two subunits — large (mt-LSU) and small (mt-SSU).[2] Mitoribosomes consist of several specific proteins and fewer rRNAs.[2] While mitochondrial rRNAs are encoded in the mitochondrial genome, the proteins that make up mitoribosomes are encoded in the nucleus and assembled by cytoplasmic ribosomes before being implanted into the mitochondria.[3]

Function[edit]

Mitochondria contain around 1000 proteins in yeast and 1500 proteins in humans. However, only 8 and 13 proteins are encoded in mitochondrial DNA in yeast and humans respectively. Most mitochondrial proteins are synthesized via cytoplasmic ribosomes.[4] Proteins that are key components in the electron transport chain are translated in mitochondria.[5][6]

Structure[edit]

Mammalian mitoribosomes have small 28S and large 39S subunits, together forming a 55S mitoribosome.[7][8] Plant mitoribosomes have small 33S and large 50S subunits, together forming a 78S mitoribosome.[7][8]

Animal mitoribosomes only have two rRNAs, 12S (SSU) and 16S (LSU), both highly minimized compared to their larger homologues.[7] Most eukaryotoes use 5S mitoribosomal RNA, animals, fungi, alveolates and euglenozoans being the exceptions.[9] A variety of methods have evolved to fill in the gap left by a missing 5S, with animals co-opting a Mt-tRNA (Val in vertebrates).[7][10]

Comparison to other ribosomes[edit]

Like mitochondria itself is descended from bacteria, mitochondrial ribosomes are descended from bacterial ribosomes.[1] As mitochondria evolved however, the mitoribosome has significantly diverged from its bacterial cousins leading to differences in configuration and function.[1] In configuration, the mitoribosome includes additional proteins in both its large and small subunits.[1] In function, mitoribosomes are much more limited in the proteins they translate, only producing a few proteins, used mostly in the mitochondrial membrane. [1] Below is a table showing some properties of different ribosomes:

Properties of mitoribosomes
Bacteria[1][11] Cytosolic (Eukaryote)[11][1] Mammalian mitochondria[1][11] Yeast Mitochondria[1][11] Plant Mitochondria [12]
Sedimentation Coefficient (LSU/SSU) 70S (50S/30S) 80S (60S/40S) 55S (39S/28S) 74S (54S/37S) ~80S
Number of proteins (LSU/SSU) 54 (33/21) 79-80 (46-47/33) 80 (50/30) 84 (46/38) 68-80
Number of rRNAs (LSU/SSU) 3 (2/1) 4 (3/1) 3 (2/1) 2 (1/1) 3 (2/1)

Diseases[edit]

As the mitoribosome is responsible for the manufacture of proteins necessary for the electron transport chain, malfunctions in the mitoribosome can result in metabolic disease.[13] [3] In humans, disease particularly manifests in energy-reliant organs such as the heart, brain, and muscle.[3] Disease either originates from mutations in mitochondrial rRNA or genes encoding the mitoribosomal proteins.[3] In the case of mitoribosomal protein mutation, heredity of disease follows Mendelian inheritance as these proteins are encoded in the nucleus.[13] On the other hand, because mitochondrial rRNA is encoded in the mitochondria, mutations in rRNA are maternally inherited.[13] Examples of diseases in humans caused by these mutations include Leigh syndrome, deafness, neurological disorders, and various cardiomyopathies.[13]Inplants, mutation in mitoribosomal proteins can result in stunted size and distorted leaf growth.[14]

Genes[edit]

The mitochondrial ribosomal protein nomenclature generally follows that of bacteria, with extra numbers used for mitochondrion-specific proteins. (For more information on the nomenclature, see Ribosomal protein § Table of ribosomal proteins.)

References[edit]

  1. ^ a b c d e f g h i Greber BJ, Ban N (June 2016). "Structure and Function of the Mitochondrial Ribosome". Annual Review of Biochemistry. 85 (1): 103–132. doi:10.1146/annurev-biochem-060815-014343. PMID 27023846.
  • ^ a b Amunts A, Brown A, Toots J, Scheres SH, Ramakrishnan V (April 2015). "Ribosome. The structure of the human mitochondrial ribosome". Science. 348 (6230): 95–98. doi:10.1126/science.aaa1193. PMC 4501431. PMID 25838379.
  • ^ a b c d Sylvester JE, Fischel-Ghodsian N, Mougey EB, O'Brien TW (March 2003). "Mitochondrial ribosomal proteins: candidate genes for mitochondrial disease". Genetics in Medicine. 6 (2): 73–80. doi:10.1097/01.GIM.0000117333.21213.17. PMID 15017329. S2CID 22169585.
  • ^ Wenz LS, Opaliński Ł, Wiedemann N, Becker T (May 2015). "Cooperation of protein machineries in mitochondrial protein sorting". Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 1853 (5): 1119–1129. doi:10.1016/j.bbamcr.2015.01.012. PMID 25633533.
  • ^ Johnston IG, Williams BP (February 2016). "Evolutionary Inference across Eukaryotes Identifies Specific Pressures Favoring Mitochondrial Gene Retention". Cell Systems. 2 (2): 101–111. doi:10.1016/j.cels.2016.01.013. PMID 27135164.
  • ^ Hamers L (2016). "Why do our cell's power plants have their own DNA?". Science. doi:10.1126/science.aaf4083.
  • ^ a b c d Greber BJ, Bieri P, Leibundgut M, Leitner A, Aebersold R, Boehringer D, Ban N (April 2015). "Ribosome. The complete structure of the 55S mammalian mitochondrial ribosome". Science. 348 (6232): 303–308. doi:10.1126/science.aaa3872. hdl:20.500.11850/100390. PMID 25837512. S2CID 206634178.
  • ^ a b Spremulli LL (2016-01-01). "The Protein Biosynthetic Machinery of Mitochondria". In Bradshaw RA, Stahl PD (eds.). Encyclopedia of Cell Biology. Waltham: Academic Press. pp. 545–554. doi:10.1016/b978-0-12-394447-4.10066-5. ISBN 978-0-12-394796-3.
  • ^ Valach M, Burger G, Gray MW, Lang BF (December 2014). "Widespread occurrence of organelle genome-encoded 5S rRNAs including permuted molecules". Nucleic Acids Research. 42 (22): 13764–13777. doi:10.1093/nar/gku1266. PMC 4267664. PMID 25429974.
  • ^ Brown A, Amunts A, Bai XC, Sugimoto Y, Edwards PC, Murshudov G, et al. (November 2014). "Structure of the large ribosomal subunit from human mitochondria". Science. 346 (6210): 718–722. Bibcode:2014Sci...346..718B. doi:10.1126/science.1258026. PMC 4246062. PMID 25278503.
  • ^ a b c d De Silva D, Tu YT, Amunts A, Fontanesi F, Barrientos A (2015-07-18). "Mitochondrial ribosome assembly in health and disease". Cell Cycle. 14 (14): 2226–2250. doi:10.1080/15384101.2015.1053672. PMC 4615001. PMID 26030272.
  • ^ Robles P, Quesada V (December 2017). "Emerging Roles of Mitochondrial Ribosomal Proteins in Plant Development". International Journal of Molecular Sciences. 18 (12): 2595. doi:10.3390/ijms18122595. PMC 5751198. PMID 29207474.
  • ^ a b c d De Silva D, Tu YT, Amunts A, Fontanesi F, Barrientos A (2015-07-18). "Mitochondrial ribosome assembly in health and disease". Cell Cycle. 14 (14): 2226–2250. doi:10.1080/15384101.2015.1053672. PMC 4615001. PMID 26030272.
  • ^ Robles P, Quesada V (December 2017). "Emerging Roles of Mitochondrial Ribosomal Proteins in Plant Development". International Journal of Molecular Sciences. 18 (12): 2595. doi:10.3390/ijms18122595. PMC 5751198. PMID 29207474.
  • Further reading[edit]

  • t
  • e

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Mitochondrial_ribosome&oldid=1189875494"

    Categories: 
    Ribosomal proteins
    Mitochondrial genetics
    Molecular and cellular biology stubs
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    All stub articles
     



    This page was last edited on 14 December 2023, at 15:58 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki