コンテンツにスキップ

ジェットエンジン

出典: フリー百科事典『ウィキペディア(Wikipedia)』
エアバスA320のジェットエンジン
ナセルに覆われたボーイング737-500CFM56ジェットエンジン(ターボファン)。
アメリカジョージア州ロビンス空軍基地でテスト中のF-15 イーグルのF100ジェットエンジン(ターボファン)。

: jet engine使



使調[1]

使


[]


使使

使



[ 1]



[2]

[]

HeS 1

190319301791 1001903 (Ægidius Elling) 

1940 N.1=1910
He178
 E.28/39
Me262

[3]1920193741936HeS 1HeS 3He17819398 E.28/39He178219415

BMWHe178E.28/39Me262Ar234V1P.13a BMW 00320[4]

[]

[]

PV TS qin qout 

4

30

[]


 T ·m V V  T[ 2]


 ·m  T 700800 km/h  V  V T

 V V  V·m V  V T P

[ 3]V  V ·m 

[]


SHP使lbfkgfN Fnkgf  lbfEPR使

 Fn






Wa kg/s  lb/s

Wf kg/s  lb/s

g 9.8 m/s2  32.2 ft/s2

Va m/sft/s

Vj m/s  ft/s

Aj ft2 m2

Pam kgf/m2  lbf/ft2

Psj kgf/m2  lbf/ft2








Wf kg/s lb/s

Wfp 1kg/s lb/s

Vjp 1m/s  ft/s

Waf 2kg/s  lb/s

Vjf 2m/s  ft/s


[]


3





使寿

使使60-80%使使1No.12No.2

使

[]



[]


0.5使

 (divergent duct)



 (convergent divergent duct)

使



使[5]

[]


F-15F10030777GE9040使2[6]
遠心圧縮式 (centrifugal compressor)
流入空気を羽根車(インペラー、impeller)によってエンジン回転軸の遠心方向に90°偏向させ、その遠心力と圧縮機出口に設置されたディフューザーで空気の速度エネルギーを圧力エネルギーに変換することで空気圧力を高める方式である(インペラーとディフューザーの組を1段と数える)。その後高められた加圧空気はマニホールドから燃焼室に送られる。製作が容易で安価であり、構造が簡単で1段当りの圧力比が高く、比較的効率が高い、丈夫で異物の吸入に強い、安全運転範囲が広い、回転数がある程度変動しても効率が落ちないといった利点があり、小出力ならば軸流圧縮式に比べて軽量化が可能である。このような特徴からオハインやホイットルが製作した初期のターボジェットはこのタイプの圧縮機を使用している。ただし、軸流式と組み合わせなければ段数を増やすことが難しく、圧縮比を大きくするためにインペラーの直径を増すと前面投影面積が大きくなる(機体に搭載した場合空気抵抗が増加する)という欠点を持つ。したがって今日の航空機用大推力エンジンにはほとんど用いられない。しかしながら、中型輸送機用ターボプロップや中・小型ヘリコプター用ターボシャフトなどの比較的低出力のエンジンには、その構造の単純さ故に今なお使われている(その場合、軸流式との組み合わせであることも多い)。また、ホンダジェットに搭載されたターボファンエンジンHF120の高圧圧縮機(最終段の圧縮機)にもチタン合金製の遠心式圧縮機が使用されている。ちなみに航空用レシプロエンジンのスーパーチャージャーもインペラーとディフューザーを備える遠心圧縮式である。
軸流圧縮式 (axial compressor)

Compressor RotorCompressor Stator2Stage調[6]

Compressor DiskRotor BladeBlade and DiskSpacer使Tie-rodHub使使Wing DiskDrum Rotor

Stator Vane2Inner ShroudOuter Shroud2Vane and Shroud12調

[]


 (Diffuser) [5]

[]


使

PDPDPD

Fuel control unit調調

[]


Fuel nozzle1使

調PDP&D valve121使2使PDP

1212122

燃焼室[編集]

カン型燃焼室を採用した初期のターボジェットであるデ・ハビランド ゴースト。左から右に空気が流れ、銀色の筒状部分が燃焼室後部で燃料室ケーシングや燃料室ライナおよびノズルの配置が確認できる。
GE J79エンジンのカン型燃焼室

 (Combustion Chamber) 使 (Reverse flow type combustion chamber) 使使

 (Liner)使482

使15140 - 120:1Swirler,  14 - 18:125%75%

40 - 120:11,600 - 2,000800 - 1,000

100 - 200m/s10 - 20m/s調

調


[]


: : :482

3



 (Can type combustion chamber) Combustion case2使



 (Annular type combustion chamber) 2[ 4]2

沿





 (Can-annular type combustion chamber) 

1960

[]



燃焼効率
供給された燃料は完全に燃焼することはなく、エンジン内で生じる熱量は理論的に発生可能な熱量より小さくなる。燃料が燃焼した割合が燃焼効率 (Combustion Efficiency) であり「実際に発生した熱量/供給燃料が理論的に発生可能な熱量」で表される。燃焼室に供給される圧力と温度が高くなるほど理論値に近くなり、実際には海面高度でほぼ100%であり、巡航高度では98%ほどになっている。
圧力損失
燃焼室の入口圧力と出口圧力の比を圧力損失 (Pressure Loss) と呼び、燃焼室での圧力損失は、燃焼室出口圧力の総圧/燃焼室入口圧力の総圧で表される。これは過流や摩擦によって生じるものであり、出来るだけ1に近い方が良いがおおむね0.93 - 0.98であり、失われた圧力が2 - 7%であることを示す。
燃焼負荷率
同じ大きさの燃焼室であればより多くの熱量が生み出せる燃焼室のほうが高い性能であるため、燃焼室の単位当りの空間容積でどれほどの熱量が発生できるかを示す指標として燃焼負荷率がある。燃焼負荷率は燃焼による発熱量/燃焼室内筒容積で表される。アニュラ型が高い燃焼負荷率を持つ。燃焼負荷率の向上を求めて過度に狭い空間で燃焼させると、高熱に曝される耐熱材の耐久性が損なわれる。
燃焼安定性
空気と燃料の混合比である空燃比と空気流量との相関について考える時、大きな熱出力を発生させようと空気流量を増すと、燃焼を継続できる空燃比は狭い範囲に限られ、やがて空気流量が限界を超えると最適な空燃比であっても燃焼は継続できなくなり「フレームアウト」する。これらの特性が燃焼安定性である。燃焼安定性はフレームアウトを起こさない限界の空気流量と希薄限界、濃厚限界からなる。
出口温度分布
燃焼室の出口ではガスの温度分布が均一である方が、後のブレードなどに熱的負担が少なくて済むため、その均一性を出口温度分布として示す。
高空再着火性能
飛行中にフレームアウトを起こした場合は再着火を試みるが、あまりに高空では燃焼室内の圧力が足らずに燃料に点火できない。同様に機速が不足しても圧力が足らずに燃料に点火できないか、仮に点火できても燃焼がタービンや排気部分まで及んで焼損が生じる。逆に機速が大きすぎると空気流量が大きすぎてやはり点火できない。高空再着火性能では、低空も含めた空中での再点火が可能な高度と速度の一定領域を性能として示す。
有害廃出物
環境保護の観点から、運転されるエンジンから排出される一酸化炭素や窒素酸化物といった有害廃出物の量は少ないほうが良く、燃焼室の性能の1つに数えられる。
材質
燃焼室はニッケル系の耐熱合金で作られる。特にライナは二次空気で冷却してもかなり高温になるため、セラミック・コーティングが施されている[5]

タービン[編集]

J79の軸流式タービン部

 (Turbine) 2/3-3/4使1/3-1/4使Radial Flow TurbineAxial Flow Turbine2

 (Radial Flow Turbine)

Turbine WheelNozzle

Axial Flow Turbine

Turbine RotorTurbine StatorTurbine BladeTurbine DiskBlade and DiskT

Turbine NozzleNozzle Guide Vane2
反動タービンのタービン・ノズルとタービン動翼の段の構成とそこを流れる燃焼ガスの流れの速度と圧力の変化。 A燃焼ガスの絶対速度、Bタービン動翼の回転速度、C燃焼ガスのタービン動翼に対する相対速度、P燃焼ガスの圧力、破線は燃焼ガスの流入経路、タービン動翼の下の黒色の矢印は動翼の回転方向、 衝動タービンのタービン・ノズルとタービン動翼の段の構成とそこを流れる燃焼ガスの流れの速度と圧力の変化。 A燃焼ガスの絶対速度、Bタービン動翼の回転速度、C燃焼ガスのタービン動翼に対する相対速度、P燃焼ガスの圧力、破線は燃焼ガスの流入経路、タービン動翼の下の黒色の矢印はタービン動翼の回転方向、
反動タービンのタービン・ノズルとタービン動翼の段の構成とそこを流れる燃焼ガスの流れの速度と圧力の変化。
A燃焼ガスの絶対速度、Bタービン動翼の回転速度、C燃焼ガスのタービン動翼に対する相対速度、P燃焼ガスの圧力、破線は燃焼ガスの流入経路、タービン動翼の下の黒色の矢印は動翼の回転方向、
衝動タービンのタービン・ノズルとタービン動翼の段の構成とそこを流れる燃焼ガスの流れの速度と圧力の変化。
A燃焼ガスの絶対速度、Bタービン動翼の回転速度、C燃焼ガスのタービン動翼に対する相対速度、P燃焼ガスの圧力、破線は燃焼ガスの流入経路、タービン動翼の下の黒色の矢印はタービン動翼の回転方向、


11EGT

 (Reaction turbine)  (Impulse turbine) 

50% (Reactionimpulse turbine) 

222222





2190%

使

穿





12



[7]

[]

F-2F110-IHI-129

 (exhaust nozzle) 


[]

一部のターボジェットやターボファンはアフターバーナー[注釈 5]と呼ばれる仕組みを持つものがある。アフターバーナーでは、これに適するように延伸されデフューザーを備えた円筒状ノズルの上流部に燃料噴射ノズル、または燃料スプレーバーを設けて燃料をタービンからの排気に噴霧し、再び燃焼させることで推力を増している[注釈 6]。アフターバーナーは主に超音速飛行する航空機に搭載され、離陸時や緊急時の加速性の改善に使用され、超音速飛行のために使用されることもある。特にターボファンエンジンは排気流の速度が低く抑えられるため、アフターバーナーを追加する事によって高速性を補償する[注釈 7][5]

高温の排気に燃料を噴射するという仕組上、非常に燃料消費率が悪く、騒音や有害ガスの発生といったデメリットも大きい。超音速機であっても燃料の消費が大きいため、緊急時以外には超音速飛行は行わずに、亜音速/遷音速領域での加速性能の向上が主目的となっているものが多い。超音速巡航(スーパークルーズ)を実現するためには、アフターバーナーを使用せずに音速を突破できることが求められる傾向がある。

逆推力装置[編集]

ハの字型のスポイラー・ドアをノズル後方に備えるフォッカー 70
ファン経由のバイパス流をナセル側面から前方に偏向させるドアを持つエアバスA319

[ 8]40-50%使

20 - 30%

使退使60100km/h使

[]










調

/





CSD

使使調使使使CSD使



[5]

[]


使

APU[8]


[]


使28V使115V400Hz使使使2使使使

22221

[]


使使使3

[]


調調

[]



[]



[]




調調

[]


便








()



















ターボジェットエンジン[編集]

タービンの回転力により圧縮機を駆動して空気を圧縮し、その燃焼によって得られる排気流のみで推力を得る純粋なジェット推進式エンジン。ガスタービン型のジェットエンジンとしては最も基本的なもので、フランク・ホイットルやハンス・フォン・オハインが製作した初期のジェットエンジンもこのタイプであり、第二次世界大戦前後に研究・開発が飛躍的に進んで一気に普及した。ただし、排気流速がエンジン搭載機の速度より遥かに大きいために効率が悪く、後述するターボファンエンジンが完成するとそれに取って代わられていった。ジェット流量が1軸式ガスタービンの回転数と一体となり出力調整が自由に出来ない。

採用例
1939年に初飛行したHe178への搭載に始まり、第二次世界大戦中にはドイツで未熟ながらも実用化された。初期のものは耐久時間が短く、低推力・高燃費で安全性にも問題を抱えていたが、朝鮮戦争が始まる1950年頃には一応完成の域に達し、1952年にはイギリスで世界初のジェット旅客機コメット1の運用が開始された。その後も改良が続けられアフターバーナーの使用と共に戦闘機や一部旅客機(コンコルド[9]Tu-144)の超音速飛行を可能たらしめたが、騒音[10]や排煙(初期のジェット旅客機は黒煙を排出していた)、燃費[10]の問題からターボプロップやターボファンが実用化されると順次交代していった。ベトナム戦争ではターボジェット戦闘機F-4MiG-21が活躍するものの、それ以降は戦闘機といえど低バイパス比のターボファンが一般化し、現在では純粋なターボジェットの需要はほとんどなくなっている。

ターボファンエンジン[編集]

低バイパス比ターボファンの概略図。戦闘機に搭載されるものは上図のようにバイパス空気流を燃焼部と外周部の間に通し、ノズル部で合流させる。
高バイパス比ターボファンの概略図。旅客機に採用されるのはこのタイプが多いが、実際は上図外側にナセルがあるためバイパス流が解放されるのはもっと後方である。

23調23





使



使使

Waf Wap Waf/Wap  (By-Pass Ratio, BPR) 55

14[6]9787101
コア分離型超高バイパス比ターボファン
ターボファンの派生型として、現在JAXAで構想されているコア分離型超高バイパス比ターボファンエンジンといわれるものがある。これはファンとガスタービン部分(コアエンジン)を分離し、ガスタービン側で圧縮した空気をファンにバイパスして駆動しようというアイデアである。これにより10を越える高バイパス比が実現し、ファンのコントロールやレイアウトの自由度を増すことで複数のリフトファンおよび推進ファンの設置とそれらのスイッチングを行い、今までにない大型VTOL機を製作することも可能だとされている[11]
採用例
現在のジェット旅客機の多くが高バイパス比ターボファンを採用しているが、低バイパス比ターボファンを搭載した旅客機も近年まで製造され続けた。超音速飛行を行う戦闘機の場合、バイパス比の低い、より高速に適したものが採用されている。特に著しいのはF-22が装備するF119であり、バイパス比は約0.2と非常に小さい。これはアフターバーナーなしでの超音速巡航を可能にするためである。

ギヤードターボファンエンジン[編集]


1. 2.

 (Geared turbo-fan engine, GTF) 



Mitsubishi SpaceJet A320neoC MS-21 E-Jet E2

[]


90%使使10%12調

10,000hp



0.6











 (shaft horse power, shp)  (effective horse power, ehp) 

[]




1978340BDHC-8 Q300/Q400YS-11

C-130P-3C使C-130 (EGT; Exhaust gas temperature) P-3C

Tu-952900km/hB-52

P-8P-1

ターボ・ラムジェットエンジン[編集]

ラムジェットエンジンの内部にターボジェットと同等の機構を取り付け、ラムジェットが作動する高速に達するまではターボジェットとして機能する形式のエンジン。もしくはターボジェットの外周部にラムジェットの機能を付加する形式ともいえ、高バイパス比ターボジェット (high-bypass-ratio turbojet) とも呼ばれる。流入空気をターボジェットへ回すか、完全にバイパスしてラムジェットとして機能させるかを飛行速度に応じてバイパスフラップで制御する。

採用例
現在のところ、上記のコンセプトに基づいて製作された実用エンジンは存在しない。

SR-71とその原型機(A-12YF-12)に搭載されたプラット・アンド・ホイットニー J58シリーズ[13]をターボラムジェットエンジンに分類している事例が多く見られる。超音速飛行時にJ58はインレット部の空気吸入・圧縮で出力の8割を生み出す[14]。しかし、超音速機においてインレットで推力が発生する事例は珍しくない。またJ58においてもインレット部で燃焼を行うわけではなく、燃焼室に等エントロピ圧縮された空気が供給されるわけでもない。製造元の Pratt & Whitney 社はJ58をターボジェットと分類している。

なお、ターボ・ラムジェット機としてしばしばMiG-25が挙げられることがある。しかしこれは誤りであり、同機は3000km/hの高速飛行時に得られるラム圧を考慮して圧縮機の圧縮比を低く抑えてあるだけで、ラムジェットとしてのエンジン動作は行っていない。

スクラムジェットエンジン[編集]

基本はラムジェットと同様であるが、超音速燃焼が行われる点が異なる。

スーパーソニック・コンバスチョン・ラムジェット (supersonic combustion ramjet) を略してスクラムジェットと呼ぶ[15]。基本的にはラムジェットと同じ発想のエンジンであるが、ラムジェットよりもより高速域で作動する事を前提とし、そのためエンジン内に吸入された空気流が、加圧された後もなお、超音速流が保たれる点が通常のラムジェットと異なる。空気流が高速であるため、燃焼が緩やかな場合は燃焼が終了しないうちにエンジン外に排出される事になる。そのためスクラムジェットエンジンの場合は速やかな燃焼を実現する必要がある。そのための燃料としては、現在は主に水素が用いられ、今のところ動作時間は数十秒が限度である(ただし、それでも大きな加速力を得ることができる)。極超音速での動作を目的としており、単段式宇宙往還機 (SSTO) を実現するための要素技術の一つとされる。

採用例
近年、日本を含めた主要先進各国でスクラムジェット機の構想や開発が行われているが、2007年現在で確実な成果を収めているのはNASAの開発したX-43である。X-43はスクラムジェットが動作するまでペガサス・ロケットにより加速される仕組みであり、2004年11月16日にマッハ9.8(時速12,144 km、7,546 mph)というエアブリージングエンジン搭載機としての最高速度記録を打ち立てている。

ロケット・ラムジェット複合型エンジン[編集]

ラムジェットエンジンの内部に、固体燃料ロケットエンジンの固体燃料を充填したもの。固体燃料が存在する間はロケットエンジンとして動作するが、燃料を燃やし尽くすとその後はラムジェットエンジンとして動作する。

採用例

ミサイルにおいて採用される。P-800オーニクスやKh-31など。

パルスジェットエンジン[編集]

吸気・燃焼・排気が間欠的に行われる。

空気取り入れ口に設けられたシャッターを高速で開閉することにより、燃焼過程と排気・吸気が交互かつ間欠的に行われる方式のエンジン。空気の圧縮には燃料の着火により生じる衝撃波の一種(爆轟波デトネーションパルスと呼ばれる)によって発生する高圧を利用する。燃焼が間欠のため燃焼ガスに晒される部分の耐熱性が連続燃焼ガスタービンのそれより低くて済み、構造がきわめて単純なために製造コストが安く済むが、シャッターの開閉と燃料噴射・点火のタイミング制御が開発当初は課題となった。間欠吸排気に由来する独特の排気音が特徴である。エンジン全体がU字型をした、シャッター(バルブ)の無いバルブレス・パルスジェットエンジンもある。どちらも振動や騒音が大きく燃費も悪いため、圧縮機を備えたガスタービン型のジェットエンジンの登場と共に開発されることはなくなった。

採用例
第二次世界大戦時のドイツにおいて、V1飛行爆弾の推進器という実用例がある。同機では、使い捨てというミサイルの性質と、構造が簡単で安価に作れるというこのエンジンの性質、またタービン-コンプレッサー型のエンジンの開発の難しさもあり重宝された。前述のようにその後の世界では利点が薄く難点が多いため、広く実用された例はほぼ無い。

外部動力圧縮ジェットエンジン[編集]

MiG-13のモータージェットの概略図。レシプロエンジン(黄色)はプロペラと圧縮機(緑色)の駆動のために用いられた。ちなみにコアンダ=1910やカプロニ・カンピーニ N.1などはプロペラは備えていない。

ジェットエンジンの黎明期に存在した圧縮機を外部動力(通常はレシプロエンジン)で駆動する形式のエンジンで、タービンは持たない。モータージェットサーモジェット(セコンド・カンピニによる命名)と呼ばれた。ガスタービンエンジンの実現が困難であった時期に考案・試作されたが、燃焼ガスにより得られる推力はごく小さく、レシプロエンジン駆動のプロペラ推進に及ぶものではなかったために計画や実験の段階で開発が放棄されたものが多い。

採用例
最初の機体は1910年にアンリ・コアンダが製作したコアンダ=1910であるが、これはまともな飛行を行うことなく事故で失われた。その後、革新技術としてジェットエンジンが希求されるようになってから現れたのがイタリアで1940年に初飛行したカプロニ・カンピーニ N.1である。第二次世界大戦中にも各国でモータージェット機がいくつか計画されているが、一応実機が完成したのは日本の桜花22型ツ11搭載)と旧ソ連のMiG-13Su-5くらいであった。

特殊なジェットエンジン[編集]

広義にジェットエンジンに分類できるものを以下に示す。

原子力ジェットエンジン
吸入した圧縮空気を原子炉の炉心で加熱し噴射する方式。1950年代のアメリカにおいて、ジェット推進装置を搭載した実験機X-6の開発が試みられた。しかし遮蔽試験機NB-36Hによる予備的試験のみで計画は終了した。排気に多大な放射性物質が含まれる危険がある事、気体の熱交換効率は液体と比べて小さい事、放射線遮蔽のため搭載機体の重量が増大する事が問題とされた。
恒星間ラムジェット(バサード・ラムジェット)
恒星間宇宙船の動力として古くから考えられているアイデアで、基本はラムジェットである。星間ガスを巨大なラムスクープで集め、推進剤とする。

ジェットエンジンを応用した高揚力装置[編集]


 (Internally Blown Flap, IBF) (Externally Blown Flap, EBF) (Upper Surface Blowing, USB)沿

脚注[編集]

注釈[編集]



(一)^  N.1

(二)^ 

(三)^  η使 TV P
V := V調 η = 1.0 
 η = 0.8 

(四)^ 2

(五)^ 使

(六)^ 25%75%

(七)^ 使

(八)^ 

出典[編集]



(一)^  2005, pp. 190, 192

(二)^ ASCII.jpJAL

(三)^  2005, p. 189

(四)^  2005, p. 190

(五)^ abcde  20083111ISBN 9784902151329

(六)^ abc 2005, p. 202

(七)^  8()  ISBN 4-930858-48-8

(八)^ JAL - 

(九)^  2005, p. 191

(十)^ ab 2005, p. 196

(11)^ , , , , , TR-1289199641-7CRID 1523388080992312960ISSN 0389-4010 

(12)^  2005, p. 215

(13)^ The heart of the SR-71 "Blackbird" : The mighty J-58 engine

(14)^ Pratt & Whitney J58 Turbojet

(15)^  2005, p. 216

[]


 2005164-212,285-289ISBN 978-4-7980-1020-5 

  - 200023-36ISBN 978-4-7655-1610-5 

 (2) 1996ISBN 978-4-87687-173-5 

J. L.  - 1993ISBN 978-4-13-061152-7 

2005ISBN 9784798010687 

 21989ISBN 4-930858-11-9 

[]
















 - 


 - 

 - 

FADEC




 - 




 He178 - 

 E.28/39 - 

 Me262 - 

V1 - 

 - 

SR-71, A-12, YF-12 - 

X-43 - 9.8






 - 20J3

[]